Elevational plant species richness patterns and their drivers across non-endemics, endemics and growth forms in the Eastern Himalaya

Abstract

Despite decades of research, ecologists continue to debate how spatial patterns of species richness arise across elevational gradients on the Earth. The equivocal results of these studies could emanate from variations in study design, sampling effort and data analysis. In this study, we demonstrate that the richness patterns of 2,781 (2,197 non-endemic and 584 endemic) angiosperm species along an elevational gradient of 300–5,300 m in the Eastern Himalaya are hump-shaped, spatial scale of extent (the proportion of elevational gradient studied) dependent and growth form specific. Endemics peaked at higher elevations than non-endemics across all growth forms (trees, shrubs, climbers, and herbs). Richness patterns were influenced by the proportional representation of the largest physiognomic group (herbs). We show that with increasing spatial scale of extent, the richness patterns change from a monotonic to a hump-shaped pattern and richness maxima shift toward higher elevations across all growth forms. Our investigations revealed that the combination of ambient energy (air temperature, solar radiation, and potential evapo-transpiration) and water availability (soil water content and precipitation) were the main drivers of elevational plant species richness patterns in the Himalaya. This study highlights the importance of factoring in endemism, growth forms, and spatial scale when investigating elevational gradients of plant species distributions and advances our understanding of how macroecological patterns arise.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Acharya BK, Chettri B, Vijayan L (2011a) Distribution pattern of trees along an elevation gradient of Eastern Himalaya, India. Acta Oecol 37:329–336

    Article  Google Scholar 

  2. Acharya KP, Vetaas OR, Birks HJB (2011b) Orchid species richness along Himalayan elevational gradients. J Biogeogr 38:1821–1833

    Article  Google Scholar 

  3. Bertuzzo E, Carrara F, Mari L, Altermatt F, Rodriguez-Iturbe I, Rinaldo A (2016) Geomorphic controls on elevational gradients of species richness. Proc Natl Acad Sci USA 113:1737–1742

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bhatt JP, Manish K, Pandit MK (2012) Elevational gradients in fish diversity in the Himalaya: water discharge is the key driver of distribution patterns. PLoS One 7:e46237. doi:10.1371/journal.pone.0046237

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Bhattarai KR, Vetaas OR (2003) Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Global Ecol Biogeogr 12:327–340

    Article  Google Scholar 

  6. Bhattarai KR, Vetaas OR (2006) Can Rapoport’s rule explain tree species richness along the Himalayan elevation gradient, Nepal? Divers Distrib 12:373–378

    Article  Google Scholar 

  7. Brown JH, Lomolino MV (1998) Biogeography. Sinauer Associates, Sunderland

    Google Scholar 

  8. Carpenter C (2005) The environmental control of plant species density on a Himalayan elevation gradient. J Biogeogr 32:999–1018

    Article  Google Scholar 

  9. Chettri B, Bhupathy S, Acharya BK (2010) Distribution pattern of reptiles along an eastern Himalayan elevation gradient, India. Acta Oecol 36:16–22

    Article  Google Scholar 

  10. Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9.1. http://viceroy.eeb.uconn.edu/estimates/. Accessed 4 May 2014

  11. Colwell RK, Hurtt GC (1994) Nonbiological gradients in species richness and a spurious Rapoport effect. Am Nat 144:570–595

    Article  Google Scholar 

  12. Colwell RK, Lees DC (2000) The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol Evol 15:70–76

    CAS  Article  PubMed  Google Scholar 

  13. Colwell RK, Rahbek C, Gotelli NJ (2004) The mid-domain effect and species richness patterns: what have we learned so far? Am Nat 163:E1–E23

    Article  PubMed  Google Scholar 

  14. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    CAS  Article  PubMed  Google Scholar 

  15. Currie DJ, Kerr JT (2008) Tests of the mid-domain hypothesis: a review of the evidence. Ecol Monogr 78:3–18

    Article  Google Scholar 

  16. da Silva FKG, de Faria Lopes S, Lopez LCS, de Melo JIM, Trovão DMDBM (2014) Patterns of species richness and conservation in the Caatinga along elevational gradients in a semiarid ecosystem. J Arid Environ 110:47–52

    Article  Google Scholar 

  17. Field R, Hawkins BA, Cornell HV, Currie DJ, Diniz-Filho JA, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM (2009) Spatial species-richness gradients across scales: a meta-analysis. J Biogeogr 36:132–147

    Article  Google Scholar 

  18. Francis AP, Currie DJ (2003) A globally consistent richness-climate relationship for angiosperms. Am Nat 161:523–536

    Article  PubMed  Google Scholar 

  19. Fraser LH, Pither J, Jentsch A et al (2015) Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science 349:302–305

    CAS  Article  PubMed  Google Scholar 

  20. Fu C, Hua X, Li J, Chang Z, Pu Z, Chen J (2006) Elevational patterns of frog species richness and endemic richness in the Hengduan mountains, China: geometric constraints, area and climate effects. Ecography 29:919–927

    Article  Google Scholar 

  21. Gaston KJ, Chown SL (1999) Why Rapoport’s rule does not generalise. Oikos 84:309–312

    Article  Google Scholar 

  22. González-Oreja J, Garbisu C, Mendarte S, Ibarra A, Albizu I (2010) Assessing the performance of nonparametric estimators of species richness in meadows. Biodivers Conserv 19:1417–1436

    Article  Google Scholar 

  23. Grace JB, Anderson TM, Seabloom EW et al (2016) Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529:390–393

    CAS  Article  PubMed  Google Scholar 

  24. Graham JH, Duda JJ (2011) The humpbacked species richness-curve: a contingent rule for community ecology. Int. J Ecol 2011:1–15

    Google Scholar 

  25. Grau O, Grytnes JA, Birks HJB (2007) A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. J Biogeogr 34:1907–1915

    Article  Google Scholar 

  26. Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  27. Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties. Wiley, Chichester

    Google Scholar 

  28. Grinnell J, Storer TI (1924) Animal life in the Yosemite: an account of the mammals, birds, reptiles, and amphibians in a cross-section of the Sierra Nevada. University of California Press, Berkeley

    Google Scholar 

  29. Grytnes JA (2003) Ecological interpretations of the mid-domain effect. Ecol Lett 6:883–888

    Article  Google Scholar 

  30. Grytnes JA, McCain CM (2007) Elevational trends in biodiversity. In: Levin S (ed) Encyclopedia of Biodiversity. Elsevier, New York, pp 1–8

    Google Scholar 

  31. Grytnes JA, Vetaas OR (2002) Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am Nat 159:294–304

    Article  PubMed  Google Scholar 

  32. Grytnes JA, Heegaard E, Romdal TS (2008) Can the mass effect explain the mid-altitudinal peak in vascular plant species richness? Basic Appl Ecol 9:373–382

    Article  Google Scholar 

  33. Harrison S, Cornell H (2008) Toward a better understanding of the regional causes of local community richness. Ecol Lett 11:969–979

    Article  PubMed  Google Scholar 

  34. Hooker JD (1875–1897) The flora of British India, vol 1–7. L. Reeve and Co., London

  35. Hu J, Xie F, Li C, Jiang J (2011) Elevational patterns of species richness, range and body size for spiny frogs. PLoS One 6:e19817. doi:10.1371/journal.pone.0019817

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Huston MA (2014) Disturbance, productivity, and species diversity: empiricism vs. logic in ecological theory. Ecology 95:2382–2396

    Article  Google Scholar 

  37. Kallimanis AS, Bergmeier E, Panitsa M, Georghiou K, Delipetrou P, Dimopoulos P (2010) Biogeographical determinants for total and endemic species richness in a continental archipelago. Biodivers Conserv 19:1225–1235

    Article  Google Scholar 

  38. Karger DN, Kluge J, Krömer T, Hemp A, Lehnert M, Kessler M (2011) The effect of area on local and regional elevational patterns of species richness. J Biogeogr 38:1177–1185

    Article  Google Scholar 

  39. Kerr JT (2001) Butterfly species richness patterns in Canada: energy, heterogeneity, and the potential consequences of climate change. Conserv Ecol 5:10

    Article  Google Scholar 

  40. Kessler M (2002) The elevational gradient of Andean plant endemism: varying influences of taxon-specific traits and topography at different taxonomic levels. J Biogeogr 29:1159–1165

    Article  Google Scholar 

  41. Kharkwal G, Mehrotra P, Rawat YS, Pangtey YP (2005) Phytodiversity and growth form in relation to altitudinal gradient in the Central Himalayan (Kumaun) region of India. Curr Sci 89:873–878

    Google Scholar 

  42. Körner C (1999) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer Science & Business Media, Berlin

    Google Scholar 

  43. Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  44. Lamoreux JF, Morrison JC, Ricketts TH, Olson DM, Dinerstein E, McKnight MW, Shugart HH (2006) Global tests of biodiversity concordance and the importance of endemism. Nature 440:212–214

    CAS  Article  PubMed  Google Scholar 

  45. Lomolino MV (2001) Elevation gradients of species-density: historical and prospective views. Global Ecol Biogeogr 10:3–13

    Article  Google Scholar 

  46. Manish K, Telwala Y, Nautiyal DC, Pandit MK (2016) Modelling the impacts of future climate change on plant communities in the Himalaya: a case study from Eastern Himalaya, India. Model Earth Syst Environ 2:92. doi:10.1007/s40808-016-0163-1

    Article  Google Scholar 

  47. McCain CM (2003) North American desert rodents: a test of the mid-domain effect in species richness. J Mammal 84:967–980

    Article  Google Scholar 

  48. McCain CM (2004) The mid-domain effect applied to elevational gradients: species richness of small mammals in Costa Rica. J Biogeogr 31:19–31

    Article  Google Scholar 

  49. McCain CM (2007a) Area and mammalian elevational diversity. Ecology 88:76–86

    Article  PubMed  Google Scholar 

  50. McCain CM (2007b) Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecol Biogeogr 16:1–13

    Article  Google Scholar 

  51. McCain CM, Knight BK (2013) Elevational Rapoport’s rule is not pervasive on mountains. Global Ecol Biogeogr 22:750–759

    Article  Google Scholar 

  52. Nogues-Bravo D, Araujo MB, Romdal T, Rahbek C (2008) Scale effects and human impact on the elevational species richness gradients. Nature 453:216–219

    CAS  Article  PubMed  Google Scholar 

  53. Oommen MA, Shanker K (2005) Elevational species richness patterns emerge from multiple local mechanisms in Himalayan woody plants. Ecology 86:3039–3047

    Article  Google Scholar 

  54. Orme CDL, Davies RG, Burgess M, Eigenbrod F, Pickup N, Olson VA, Webster AJ, Ding TS, Rasmussen PC, Ridgely RS, Stattersfield AJ (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature 436:1016–1019

    CAS  Article  PubMed  Google Scholar 

  55. Pan X, Ding Z, Hu Y, Liang J, Wu Y, Si X, Guo M, Hu H, Jin K (2016) Elevational pattern of bird species richness and its causes along a central Himalaya gradient, China. PeerJ 4:e2636. doi:10.7717/peerj.2636

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pandit MK (2017) Life in the Himalaya: an ecosystem at risk. Harvard University Press, Cambridge

    Google Scholar 

  57. Pandit MK, Sodhi N, Koh L, Bhaskar A, Brook B (2007) Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. Biodivers Conserv 16:153–163

    Article  Google Scholar 

  58. Pandit MK, Manish K, Koh LP (2014) Dancing on the roof of the world: ecological transformation of the Himalayan landscape. Bioscience 64:980–992

    Article  Google Scholar 

  59. R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.Rproject.org/. Accessed 22 Aug 2014

  60. Raes N, Roos MC, Slik JW, Van Loon EE, Steege HT (2009) Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography 32:180–192

    Article  Google Scholar 

  61. Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8:224–239

    Article  Google Scholar 

  62. Singh JS, Singh SP (1987) Forest vegetation of the Himalaya. Bot Rev 53:80–192

    Article  Google Scholar 

  63. Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett 17:866–880

    Article  PubMed  Google Scholar 

  64. Stevens GC (1992) The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. Am Nat 140:893–911

    CAS  Article  PubMed  Google Scholar 

  65. Stohlgren TJ, Falkner MB, Schell LD (1995) A Modified-Whittaker nested vegetation sampling method. Vegetatio 117:113–121

    Article  Google Scholar 

  66. Telwala Y, Brook BW, Manish K, Pandit MK (2013) Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS One 8:e57103. doi:10.1371/journal.pone.0057103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Tredennick AT, Adler PB, Grace JB et al (2016) Comment on “Worldwide evidence of a unimodal relationship between productivity and plant species richness”. Science 351:457

    CAS  Article  PubMed  Google Scholar 

  68. Vetaas OR, Grytnes JA (2002) Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecol Biogeogr 11:291–301

    Article  Google Scholar 

  69. Walther BA, Moore JL (2005) The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28:815–829

    Article  Google Scholar 

  70. Webb TJ, Gaston KJ (2003) On the heritability of geographic range sizes. Am Nat 161:553–566

    Article  PubMed  Google Scholar 

  71. Whittaker RH (1952) A study of summer foliage insect communities in the Great Smoky mountains. Ecol Monogr 22:1–44

    Article  Google Scholar 

  72. Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  73. Whittaker RH (1967) Gradient analysis of vegetation. Biol Rev 42:207–264

    CAS  Article  PubMed  Google Scholar 

  74. Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470

    Article  Google Scholar 

  75. Wohlgemuth T, Nobis MP, Kienast F, Plattner M (2008) Modelling vascular plant diversity at the landscape scale using systematic samples. J Biogeogr 35:1226–1240

    Article  Google Scholar 

  76. Wu Y, Colwell RK, Rahbek C, Zhang C, Quan Q, Wang C, Lei F (2013) Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. J Biogeogr 40:2310–2323

    Article  Google Scholar 

  77. Zhang Z, He JS, Li J, Tang Z (2015) Distribution and conservation of threatened plants in China. Biol Conserv 192:454–460

    Article  Google Scholar 

Download references

Acknowledgements

KM acknowledges the support of Department of Science and Technology INSPIRE Research Fellowship, Government of India (Grant No: DST/INSPIRE Fellowship/2012/432). The financial support to MKP provided by the Ministry of Environment, Forests and Wildlife, Government of India and NHPC India vide grant No. J.12011/11/99-IA.I. and DU-DST-PURSE Grant is gratefully acknowledged. LPK was supported by the Australian Research Council. We also thank D. Dawa and R. Mehta for assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maharaj K. Pandit.

Ethics declarations

Human and animal rights

No formal approval is required for this study since this article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 722 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manish, K., Pandit, M.K., Telwala, Y. et al. Elevational plant species richness patterns and their drivers across non-endemics, endemics and growth forms in the Eastern Himalaya. J Plant Res 130, 829–844 (2017). https://doi.org/10.1007/s10265-017-0946-0

Download citation

Keywords

  • Elevational gradient
  • Endemic
  • Growth forms
  • Himalaya
  • Macroecology
  • Richness patterns