Journal of Plant Research

, Volume 130, Issue 3, pp 491–499 | Cite as

Autophagy, programmed cell death and reactive oxygen species in sexual reproduction in plants

JPR Symposium Fusion in Fertilization: Interdisciplinary Collaboration among Plant and Animal Scientists

Abstract

Autophagy is one of the major cellular processes of recycling of proteins, metabolites and intracellular organelles, and plays crucial roles in the regulation of innate immunity, stress responses and programmed cell death (PCD) in many eukaryotes. It is also essential in development and sexual reproduction in many animals. In plants, although autophagy-deficient mutants of Arabidopsis thaliana show phenotypes in abiotic and biotic stress responses, their life cycle seems normal and thus little had been known until recently about the roles of autophagy in development and reproduction. Rice mutants defective in autophagy show sporophytic male sterility and immature pollens, indicating crucial roles of autophagy during pollen maturation. Enzymatic production of reactive oxygen species (ROS) by respiratory burst oxidase homologues (Rbohs) play multiple roles in regulating anther development, pollen tube elongation and fertilization. Significance of autophagy and ROS in the regulation of PCD of transient cells during plant sexual reproduction is discussed in comparison with animals.

Keywords

Autophagy Fertilization Programmed cell death (PCD) Reactive oxygen species (ROS) Sexual reproduction Vacuole 

Abbreviations

ATGs

Autophagy-related genes

MO

Membranous organelle

mtDNA

Mitochondrial DNA

PCD

Programmed cell death

ROS

Reactive oxygen species

Rbohs

Respiratory burst oxidase homologues

VPE

Vacuolar processing enzyme

References

  1. Aguirre J, Lambeth JD (2010) Nox enzymes from fungus to fly to fish and what they tell us about Nox function in mammals. Free Radic Biol Med 49:1342–1353CrossRefPubMedPubMedCentralGoogle Scholar
  2. Al Rawi S, Louvet-Vallée S, Djeddi A, Sachse M, Culetto E, Hajjar C, Boyd L, Legouis R, Galy V (2011) Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334:1144–1147CrossRefPubMedGoogle Scholar
  3. Ankel-Simons F, Cummins JM (1996) Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. Proc Natl Acad Sci USA 93:13859–13863CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol 62:437–460CrossRefPubMedGoogle Scholar
  5. Avin-Wittenberg T, Honig A, Galili G (2012) Variations on a theme: plant autophagy in comparison to yeast and mammals. Protoplasma 249:285–299CrossRefPubMedGoogle Scholar
  6. Birky CW Jr (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci USA 92:11331–11338CrossRefPubMedPubMedCentralGoogle Scholar
  7. Boisson-Dernier A, Lituiev DS, Nestorova A, Franck CM, Thirugnanarajah S, Grossniklaus U (2013) ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases. PLoS Biol 11:e1001719CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bosch M, Poulter NS, Vatovec S, Franklin-Tong VE (2008) Initiation of programmed cell death in self-incompatibility: role for cytoskeleton modifications and several caspase-like activities. Mol Plant 1:879–887CrossRefPubMedGoogle Scholar
  9. Bozhkov PV, Lam E (2011) Green death: revealing programmed cell death in plants. Cell Death Differ 18:1239–1240CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chung T, Suttangkakul A, Vierstra RD (2009) The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability. Plant Physiol 149:220–234CrossRefPubMedPubMedCentralGoogle Scholar
  11. Duan Q, Kita D, Johnson EA, Aggarwal M, Gates L, Wu HM, Cheung AY (2014) Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat Commun 5:3129PubMedGoogle Scholar
  12. Filomeni G, De Zio D, Cecconi F (2015) Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ 22:377–388CrossRefPubMedGoogle Scholar
  13. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:742–758CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ghiglione HO, Gonzalez FG, Serrago R, Maldonado SB, Chilcott C, Curá JA, Miralles DJ, Zhu T, Casal JJ (2008) Autophagy regulated by day length determines the number of fertile florets in wheat. Plant J 55:1010–1024CrossRefPubMedGoogle Scholar
  15. Giles RE, Blanc H, Cann HM, Wallace DC (1980) Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA 77:6715–6719CrossRefPubMedPubMedCentralGoogle Scholar
  16. Greenberg JT (1996) Programmed cell death: a way of life for plants. Proc Natl Acad Sci USA 93:12094–12097CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gump JM, Thorburn A (2011) Autophagy and apoptosis: what is the connection? Trends Cell Biol 21:387–392CrossRefPubMedPubMedCentralGoogle Scholar
  18. Han S, Wang Y, Zheng X, Jia Q, Zhao J, Bai F, Hong Y, Liu Y (2015) Cytoplastic glyceraldehyde-3-phosphate dehydrogenases interact with ATG3 to negatively regulate autophagy and immunity in Nicotiana benthamiana. Plant Cell 27:1316–1331CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hanamata S, Kurusu T, Kuchitsu K (2014) Roles of autophagy in male reproductive development in plants. Front Plant Sci 5:457CrossRefGoogle Scholar
  20. Hatsugai N, Kuroyanagi M, Nishimura M, Hara-Nishimura I (2006) A cellular suicide strategy of plants: vacuole-mediated cell death. Apoptosis 11:905–911CrossRefPubMedGoogle Scholar
  21. Higaki T, Goh T, Hayashi T, Kutsuna N, Kadota Y, Hasezawa S, Sano T, Kuchitsu K (2007) Elicitor-induced cytoskeletal rearrangement relates to vacuolar dynamics and execution of cell death: in vivo imaging of hypersensitive cell death in tobacco BY-2 cells. Plant Cell Physiol 48:1414–1425CrossRefPubMedGoogle Scholar
  22. Higaki T, Kurusu, T, Hasezawa S, Kuchitsu K (2011) Dynamic intracellular reorganization of cytoskeletons and the vacuole in defense responses and hypersensitive cell death in plants. J Plant Res 124:315–324CrossRefPubMedGoogle Scholar
  23. Higashi K, Takasawa R, Yoshimori A, Goh T, Tanuma S, Kuchitsu K (2005) Identification of a novel gene family, paralogs of inhibitor of apoptosis proteins present in plants, fungi, and animals. Apoptosis 10:471–480CrossRefPubMedGoogle Scholar
  24. Hu L, Liang W, Yin C, Cui X, Zong J, Wang X, Hu J, Zhang D (2011) Rice MADS3 regulates ROS homeostasis during late anther development. Plant Cell 23:515–533CrossRefPubMedPubMedCentralGoogle Scholar
  25. Indriolo E, Safavian D, Goring DR (2014) The ARC1 E3 ligase promotes two different self-pollen avoidance traits in Arabidopsis. Plant Cell 26:1525–1543CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MR, Mae T (2008) Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol 148:142–155CrossRefPubMedPubMedCentralGoogle Scholar
  27. Izumi M, Hidema J, Wada S, Kondo E, Kurusu T, Kuchitsu K, Makino A, Ishida H (2015) Establishment of monitoring methods for autophagy in rice reveals autophagic recycling of chloroplasts and root plastids during energy limitation. Plant Physiol 167:1307–1320CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jiménez-Quesada MJ, Traverso JÁ, Alché Jde D (2016) NADPH oxidase-dependent superoxide production in plant reproductive tissues. Front Plant Sci 7:359Google Scholar
  29. Kärkönen A, Kuchitsu K (2015) Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry 112:22–32CrossRefPubMedGoogle Scholar
  30. Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, Takeda S, Kawarazaki T, Senzaki E, Hamamura Y, Higashiyama T, Takayama S, Abe M, Kuchitsu K (2014) Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell 26:1069–1080CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kaya H, Iwano M, Takeda S, Kanaoka MM, Kimura S, Abe M, Kuchitsu K (2015) Apoplastic ROS production upon pollination by RbohH and RbohJ in Arabidopsis. Plant Signal Behav 10:e989050CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ku S, Yoon H, Suh HS, Chung YY (2003) Male-sterility of thermosensitive genic male-sterile rice is associated with premature programmed cell death of the tapetum. Planta 217:559–565CrossRefPubMedGoogle Scholar
  33. Kurusu T, Hamada J, Nokajima H, Kitagawa Y, Kiyoduka M, Takahashi A, Hanamata S, Ohno R, Hayashi T, Okada K, Koga J, Hirochika H, Yamane H, Kuchitsu K (2010) Regulation of microbe-associated molecular pattern-induced hypersensitive cell death, phytoalexin production, and defense gene expression by calcineurin B-like protein-interacting protein kinases, OsCIPK14/15, in rice cultured cells. Plant Physiol 153:678–692CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kurusu T, Saito K, Horikoshi S, Hanamata S, Negi J, Yagi C, Kitahata N, Iba K, Kuchitsu K (2013) An S-type anion channel SLAC1 is involved in cryptogein-induced ion fluxes and modulates hypersensitive responses in tobacco BY-2 cells. PLoS One 8:e70623CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kurusu T, Koyano T, Hanamata S, Kubo T, Noguchi Y, Yagi C, Nagata N, Yamamoto T, Ohnishi T, Okazaki Y, Kitahata N, Ando D, Ishikawa M, Wada S, Miyao A, Hirochika H, Shimada H, Makino A, Saito K, Ishida H, Kinoshita T, Kurata N, Kuchitsu K (2014) OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development. Autophagy 10:878–888CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kurusu T, Higaki T, Kuchitsu K (2015) Programmed cell death in plant immunity: cellular reorganization, signaling and cell cycle dependence in cultured cells as a model system. In: Gunawardena A, McCabe P (eds) Plant programmed cell death. Springer, Chap 4, pp 77–96Google Scholar
  37. Kurusu T, Hanamata S, Kuchitsu K (2016) Quantitative live cell imaging of autophagic flux and roles of autophagy in reproductive development in plants. Bioimages 24:1–11Google Scholar
  38. Kwon SI, Cho HJ, Park OK (2010) Role of Arabidopsis RabG3b and autophagy in tracheary element differentiation. Autophagy 6:1187–1189CrossRefPubMedGoogle Scholar
  39. Lassig R, Gutermuth T, Bey TD, Konrad KR, Romeis T (2014) Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J 78:94–106CrossRefPubMedGoogle Scholar
  40. Li F, Vierstra RD (2012) Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci 17:526–537CrossRefPubMedGoogle Scholar
  41. Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014CrossRefPubMedPubMedCentralGoogle Scholar
  42. Li F, Chung T, Pennington JG, Federico ML, Kaeppler HF, Kaeppler SM, Otegui MS, Vierstra RD (2015) Autophagic recycling plays a central role in maize nitrogen remobilization. Plant Cell 27:1389–1408CrossRefPubMedPubMedCentralGoogle Scholar
  43. Matsushima R, Hamamura Y, Higashiyama T, Arimura Sodmergen S, Tsutsumi N, Sakamoto W (2008) Mitochondrial dynamics in plant male gametophyte visualized by fluorescent live imaging. Plant Cell Physiol 49:1074–1083CrossRefPubMedGoogle Scholar
  44. Matsushima R, Tang LY, Zhang L, Yamada H, Twell D, Sakamoto W (2011) A conserved, Mg2+-dependent exonuclease degrades organelle DNA during Arabidopsis pollen development. Plant Cell 23:1608–1624CrossRefPubMedPubMedCentralGoogle Scholar
  45. Melendez A, Levine B (2009) Autophagy in C. elegans. In: WormBook (ed) James M Kramer, Donald C Moerman doi:10.1895/wormbook.1.147.1
  46. Michaeli S, Galili G, Genschik P, Fernie AR, Avin-Wittenberg T (2016) Autophagy in plants—what’s new on the menu? Trends Plant Sci 21:134–144CrossRefPubMedGoogle Scholar
  47. Minina EA, Filonova LH, Fukada K, Savenkov EI, Gogvadze V, Clapham D, Sanchez-Vera V, Suarez MF, Zhivotovsky B, Daniel G, Smertenko A, Bozhkov V (2013) Autophagy and metacaspase determine the mode of cell death in plants. J Cell Biol 203:917–927CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741CrossRefPubMedGoogle Scholar
  49. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mogensen HL (1996) The hows and whys of cytoplasmic inheritance in seed plants. Am J Bot 83:383–404CrossRefGoogle Scholar
  51. Nagata N, Saito C, Sakai A, Kuroiwa H, Kuroiwa T (1999) The selective increase or decrease of organellar DNA in generative cells just after pollen mitosis one controls cytoplasmic inheritance. Planta 209:53–65CrossRefPubMedGoogle Scholar
  52. Niu N, Liang W, Yang X, Jin W, Wilson ZA, Hu J, Zhang D (2013) EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun 4:1445CrossRefPubMedGoogle Scholar
  53. Patel S, Caplan J, Dinesh-Kumar SP (2006) Autophagy in the control of programmed cell death. Curr Opin Plant Biol 9:391–396CrossRefPubMedGoogle Scholar
  54. Pennell RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9:1157–1168CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pérez-Pérez ME, Lemaire SD, Crespo JL (2012) Reactive oxygen species and autophagy in plants and algae. Plant Physiol 160:156–164CrossRefPubMedPubMedCentralGoogle Scholar
  56. Phan HA, Iacuone S, Li SF, Parish RW (2011) The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. Plant Cell 23:2209–2224CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rogers LA, Dubos C, Surman C, Willment J, Cullis IF, Mansfield SD, Campbell MM (2005) Comparison of lignin deposition in three ectopic lignification mutants. New Phytol 168:123–140CrossRefPubMedGoogle Scholar
  58. Safavian D, Goring DR (2013) Secretory activity is rapidly induced in stigmatic papillae by compatible pollen, but inhibited for self-incompatible pollen in the Brassicaceae. PLoS One 8:e84286CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sato M, Sato K (2011) Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334:1141–1144CrossRefPubMedGoogle Scholar
  60. Sato M, Sato K (2013) Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochim Biophys Acta 1833:1979–1984CrossRefPubMedGoogle Scholar
  61. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6:1221–1228CrossRefPubMedGoogle Scholar
  62. Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G (1999) Ubiquitin tag for sperm mitochondria. Nature 402:371–372CrossRefPubMedGoogle Scholar
  63. Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G (2000) Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol Reprod 63:582–590CrossRefPubMedGoogle Scholar
  64. Sutovsky P, McCauley TC, Sutovsky M, Day BN (2003) Early degradation of paternal mitochondria in domestic pig (Sus scrofa) is prevented by selective proteasomal inhibitors lactacystin and MG132. Biol Reprod 68:1793–1800CrossRefPubMedGoogle Scholar
  65. Teh OK, Hofius D (2014) Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. J Exp Bot 65:1297–1312CrossRefPubMedGoogle Scholar
  66. Teng X, Cheng WC, Qi B, Yu TX, Ramachandran K, Boersma MD, Hattier T, Lehmann PV, Pineda FJ, Hardwick JM (2011) Gene-dependent cell death in yeast. Cell Death Dis 2:e188CrossRefPubMedPubMedCentralGoogle Scholar
  67. Tsujimoto Y, Shimizu S (2005) Another way to die: autophagic programmed cell death. Cell Death Differ 12(Suppl 2):1528–1534CrossRefPubMedGoogle Scholar
  68. Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N (2008) Autophagy is essential for preimplantation development of mouse embryos. Science 321:117–120CrossRefPubMedGoogle Scholar
  69. van Doorn WG, Woltering EJ (2010) What about the role of autophagy in PCD? Trends Plant Sci 15:361–362CrossRefPubMedGoogle Scholar
  70. van Doorn WG, Beers EP, Dangl JL, Franklin-Tong VE, Gallois P, Hara-Nishimura I, Jones AM, Kawai-Yamada M, Lam E, Mundy J, Mur LA, Petersen M, Smertenko A, Taliansky M, Van Breusegem F, Wolpert T, Woltering E, Zhivotovsky B, Bozhkov PV (2011) Morphological classification of plant cell deaths. Cell Death Differ 18:1241–1246CrossRefPubMedPubMedCentralGoogle Scholar
  71. Vardar F, Unal M (2012) Ultrastructural aspects and programmed cell death in the tapetal cells of Lathyrus undulatus Boiss. Acta Biol Hung 63:52–66CrossRefPubMedGoogle Scholar
  72. Wang DY, Zhang Q, Liu Y, Lin ZF, Zhang SX, Sun MX, Sodmergen (2010) The levels of male gametic mitochondrial DNA are highly regulated in angiosperms with regard to mitochondrial inheritance. Plant Cell 22:2402–2416CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wei CX, Lan SY, Xu ZX (2002) Ultrastructural features of nucleus degradation during programmed cell death of starchy endosperm cells in rice. Acta Bot Sin 44:1396–1402Google Scholar
  74. Wong JL, Créton R, Wessel GM (2004) The oxidative burst at fertilization is dependent upon activation of the dual oxidase Udx1. Dev Cell 7:801–814CrossRefPubMedGoogle Scholar
  75. Xie HT, Wan ZY, Li S, Zhang Y (2014) Spatiotemporal production of reactive oxygen species by NADPH oxidase is critical for tapetal programmed cell death and pollen development in Arabidopsis. Plant Cell 26:2007–2023CrossRefPubMedPubMedCentralGoogle Scholar
  76. Yoshimoto K (2012) Beginning to understand autophagy, an intracellular self-degradation system in plants. Plant Cell Physiol 53:1355–1365CrossRefPubMedGoogle Scholar
  77. Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y (2004) Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16:2967–2983CrossRefPubMedPubMedCentralGoogle Scholar
  78. Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21:2914–2927CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zhang DS, Liang WQ, Yuan Z, Li N, Shi J, Wang J, Liu YM, Yu WJ, Zhang DB (2008) Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol Plant 1:599–610CrossRefPubMedGoogle Scholar
  80. Zhou XM, Zhao P, Wang W, Zou J, Cheng TH, Peng XB, Sun MX (2015) A comprehensive, genome-wide analysis of autophagy-related genes identified in tobacco suggests a central role of autophagy in plant response to various environmental cues. DNA Res 22:245–257CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2017

Authors and Affiliations

  1. 1.School of Bioscience and BiotechnologyTokyo University of TechnologyHachiojiJapan
  2. 2.Imaging Frontier CenterTokyo University of ScienceNodaJapan
  3. 3.Department of Applied Biological ScienceTokyo University of ScienceNodaJapan

Personalised recommendations