Journal of Plant Research

, Volume 130, Issue 4, pp 659–668

Effects of nitrogen and water addition on trace element stoichiometry in five grassland species

  • Jiangping Cai
  • Jacob Weiner
  • Ruzhen Wang
  • Wentao Luo
  • Yongyong Zhang
  • Heyong Liu
  • Zhuwen Xu
  • Hui Li
  • Yuge Zhang
  • Yong Jiang
Regular Paper
  • 259 Downloads

Abstract

A 9-year manipulative experiment with nitrogen (N) and water addition, simulating increasing N deposition and changing precipitation regime, was conducted to investigate the bioavailability of trace elements, iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in soil, and their uptake by plants under the two environmental change factors in a semi-arid grassland of Inner Mongolia. We measured concentrations of trace elements in soil and in foliage of five common herbaceous species including 3 forbs and 2 grasses. In addition, bioaccumulation factors (BAF, the ratio of the chemical concentration in the organism and the chemical concentration in the growth substrate) and foliar Fe:Mn ratio in each plant was calculated. Our results showed that soil available Fe, Mn and Cu concentrations increased under N addition and were negatively correlated with both soil pH and cation exchange capacity. Water addition partly counteracted the positive effects of N addition on available trace element concentrations in the soil. Foliar Mn, Cu and Zn concentrations increased but Fe concentration decreased with N addition, resulting in foliar elemental imbalances among Fe and other selected trace elements. Water addition alleviated the effect of N addition. Forbs are more likely to suffer from Mn toxicity and Fe deficiency than grass species, indicating more sensitivity to changing elemental bioavailability in soil. Our results suggested that soil acidification due to N deposition may accelerate trace element cycling and lead to elemental imbalance in soil–plant systems of semi-arid grasslands and these impacts of N deposition on semi-arid grasslands were affected by water addition. These findings indicate an important role for soil trace elements in maintaining ecosystem functions associated with atmospheric N deposition and changing precipitation regimes in the future.

Keywords

Nitrogen deposition Precipitation regimes Nutrient bioavailability Elemental uptake Mn toxicity Fe deficiency 

Copyright information

© The Botanical Society of Japan and Springer Japan 2017

Authors and Affiliations

  • Jiangping Cai
    • 1
    • 4
  • Jacob Weiner
    • 2
  • Ruzhen Wang
    • 1
  • Wentao Luo
    • 1
  • Yongyong Zhang
    • 1
  • Heyong Liu
    • 1
  • Zhuwen Xu
    • 1
  • Hui Li
    • 1
  • Yuge Zhang
    • 3
  • Yong Jiang
    • 1
  1. 1.Institute of Applied EcologyChinese Academy of SciencesShenyangChina
  2. 2.Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
  3. 3.College of Environmental ScienceShenyang UniversityShenyangChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations