Journal of Plant Research

, Volume 130, Issue 4, pp 677–687 | Cite as

Factors influencing distribution and local coexistence of diploids and tetraploids of Vicia cracca: inferences from a common garden experiment

Regular Paper


Vicia cracca diploids and autotetraploids are highly parapatric in Europe; tetraploids reside in western and northern part, whereas diploids occupy much drier south-eastern part. They meet together in a Central European contact zone. This distribution pattern raised questions about a transformative effect of polyploidization on plant performance and environmental tolerances. We investigated plant survival, growth, and seed production in two water regimes in a common garden experiment using seeds collected from five localities in the Central European contact zone where diploids and tetraploids occur in sympatry. Obtained data imply that tetraploids of V. cracca are not generally superior in performance to diploids. Significantly larger seeds from tetraploid mother plants collected in the field were not correlated with greater stature of the seedlings. Nonetheless, tetraploids might have a potential to out-compete diploids in the long run due to the tetraploids’ ability of greater growth which manifested in the second year of cultivation. Considering the response of diploids and tetraploids to water supply, drought stressed tetraploids but not diploids produced a higher proportion of aborted seeds than watered ones, which implies that tetraploids are more drought susceptible than diploids. On the other hand, decreased plant height in drought stresses tetraploids, which simultaneously increased total seed production, may suggest that tetraploids have a greater ability to avoid local extinction under unfavourable conditions by enhancing biomass allocation into production of seeds at the cost of lower growth. The significant interaction between ploidy level and locality in several traits suggests possible polyfyletic origin of tetraploids and the necessity to clarify the history of the tetraploids in Europe.


Drought stress Polyploid Seed production Seed weight Sympatric Vegetative growth 



The study was supported by project GAČR P505-13-32048S. It was also partly supported by institutional research project RVO 67985939, and MSMT. We owe a particular debt of gratitude to the first author’s husband for help with seed collection in the field and her mother, who helped with the garden experiment. We also thank anonymous reviewers for their comments, criticisms, and detailed suggestions.

Supplementary material

10265_2017_925_MOESM1_ESM.doc (36 kb)
Supplementary material 1 (DOC 36 KB)
10265_2017_925_MOESM2_ESM.doc (70 kb)
Supplementary material 2 (DOC 70 KB)
10265_2017_925_MOESM3_ESM.doc (40 kb)
Supplementary material 3 (DOC 39 KB)


  1. Abrahamson WG (1980) Demography and vegetative reproduction. In: Solbrig OT (ed) Demography and evolution in plant populations. Blackwell Scientific Publications, Oxford, pp 89–106Google Scholar
  2. Ana Ortega-Olivencia JAD (1997) Seed set and germination in some wild species of Vicia from SW Europe (Spain). Nord J Bot 17:639–648. doi: 10.1111/j.1756-1051.1997.tb00360.x CrossRefGoogle Scholar
  3. Balao F, Herrera J, Talavera S (2011) Phenotypic consequences of polyploidy and genome size at the microevolutionary scale: a multivariate morphological approach. New Phytol 192:256–265. doi: 10.1111/j.1469-8137.2011.03787.x CrossRefPubMedGoogle Scholar
  4. Barringer BC (2007) Polyploidy and self-fertilization in flowering plants. Am J Bot 94:1527–1533. doi: 10.3732/ajb.94.9.1527 CrossRefPubMedGoogle Scholar
  5. Benard RB, Toft CA (2007) Effect of seed size on seedling performance in a long-lived desert perennial shrub (Ericameria nauseosa: Asteraceae). Int J Plant Sci 168:1027–1033. doi: 10.1086/518942 CrossRefGoogle Scholar
  6. Bretagnolle F, Thompson JD (1996) An experimental study of ecological differences in winter growth between sympatric diploid and autotetraploid Dactylis glomerata. J Ecol 84:343–351. doi: 10.2307/2261197 CrossRefGoogle Scholar
  7. Bretagnolle F, Thompson JD, Lumaret R (1995) The influence of seed size variation on seed germination and seedling vigour in diploid and tetraploid Dactylis glomerata L. Ann Bot 76:607–615. doi: 10.1006/anbo.1995.1138 CrossRefGoogle Scholar
  8. Buggs RJA, Pannell JR (2007) Ecological differentiation and diploid superiority across a moving ploidy contact zone. Evol Int J Org Evol 61:125–140. doi: 10.1111/j.1558-5646.2007.00010.x CrossRefGoogle Scholar
  9. Castro S, Münzbergová Z, Raabová J, Loureiro J (2011) Breeding barriers at a diploid–hexaploid contact zone in Aster amellus. Evol Ecol 25:795–814. doi: 10.1007/s10682-010-9439-5 CrossRefGoogle Scholar
  10. Castro S, Loureiro J, Procházka T, Münzbergová Z (2012) Cytotype distribution at a diploid–hexaploid contact zone in Aster amellus (Asteraceae). Ann Bot doi: 10.1093/aob/mcs177 Google Scholar
  11. Chrtková A (1995) Vicia L. In: Slavík B (ed) Květena České republiky 4. Academia, Prague, pp 386–414Google Scholar
  12. Cohen H, Fait A, Tel-Zur N (2013) Morphological, cytological and metabolic consequences of autopolyploidization in Hylocereus (Cactaceae) species. BMC Plant Biol 13:173. doi: 10.1186/1471-2229-13-173 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Collins AR, Naderi R, Mueller-Schaerer H (2011) Competition between cytotypes changes across a longitudinal gradient in Centaurea stoebe (Asteraceae). Am J Bot 98:1935–1942. doi: 10.3732/ajb.1100063 CrossRefPubMedGoogle Scholar
  14. Dijk P, Van Delden W (1990) Evidence for autotetraploidy in Plantago media and comparisons between natural and artificial cytotypes concerning cell size and fertility1. Heredity 65:349–357CrossRefGoogle Scholar
  15. Eliášová A, Münzbergová Z (2014) Higher seed size and germination rate may favour autotetraploids of Vicia cracca L. (Fabaceae). Biol J Linn Soc 113:57–73. doi: 10.1111/bij.12318 CrossRefGoogle Scholar
  16. Eliášová A, Trávníček P, Mandák B, Münzbergová Z (2014) Autotetraploids of Vicia cracca show a higher allelic richness in natural populations and a higher seed set after artificial selfing than diploids. Ann Bot 113:159–170. doi: 10.1093/aob/mct252 CrossRefPubMedGoogle Scholar
  17. Felber-Girard M, Felber F, Buttler A (1996) Habitat differentiation in a narrow hybrid zone between diploid and tetraploid Anthoxanthum alpinum. New Phytol 133:531–540. doi: 10.1111/j.1469-8137.1996.tb01921.x CrossRefGoogle Scholar
  18. Galloway LF (1995) Response to natural environmental heterogeneity: Maternal effects and selection on life-history characters and plasticities in Mimulus guttatus. Evol Int J Org Evol 49:1095–1107. doi: 10.2307/2410434 CrossRefGoogle Scholar
  19. Gardner SN, Mangel M (1999) Modeling investments in seeds, clonal offspring, and translocation in a clonal plant. Ecology 80:1202–1220. doi: 10.1890/0012-9658(1999)080[1202:MIISCO]2.0.CO;2 CrossRefGoogle Scholar
  20. Godsoe W, Larson MA, Glennon KL, Segraves KA (2013) Polyploidization in Heuchera cylindrica (Saxifragaceae) did not result in a shift in climatic requirements. Am J Bot 100:496–508. doi: 10.3732/ajb.1200275 CrossRefPubMedGoogle Scholar
  21. Green AF, Ramsey TS, Ramsey J (2013) Polyploidy and invasion of English ivy (Hedera spp., Araliaceae) in North American forests. Biol Invasions 15:2219–2241. doi: 10.1007/s10530-013-0446-7 CrossRefGoogle Scholar
  22. Hanzl M, Kolář F, Nováková D, Suda J (2014) Nonadaptive processes governing early stages of polyploid evolution: Insights from a primary contact zone of relict serpentine Knautia arvensis (Caprifoliaceae). Am J Bot 101:935–945. doi: 10.3732/ajb.1400005 CrossRefPubMedGoogle Scholar
  23. Hao G-Y, Lucero ME, Sanderson SC et al (2013) Polyploidy enhances the occupation of heterogeneous environments through hydraulic related trade-offs in Atriplex canescens (Chenopodiaceae). New Phytol 197:970–978. doi: 10.1111/nph.12051
  24. Hendrix SD, Nielsen E, Nielsen T, Schutt M (1991) Are seedlings from small seeds always inferior to seedlings from large seeds? Effects of seed biomass on seedling growth in Pastinaca sativa L. New Phytol 119:299–305CrossRefGoogle Scholar
  25. Hereford J, Winn AA (2008) Limits to local adaptation in six populations of the annual plant Diodia teres. New Phytol 178:888–896. doi: 10.1111/j.1469-8137.2008.02405.x CrossRefPubMedGoogle Scholar
  26. Hosseini H, Chehrazi M, Sorestani MM, Ahmadi D (2013) Polyploidy and comparison of diploid and autotetraploid seedling of Madagascar periwinkle (Catharanthus roseus cv. alba).Google Scholar
  27. Hoya A, Shibaike H, Morita T, Ito M (2007) Germination characteristics of native Japanese dandelion autopolyploids and their putative diploid parent species. J Plant Res 120:139–147. doi: 10.1007/s10265-006-0034-3 CrossRefPubMedGoogle Scholar
  28. Humphrey LD, Pyke DA (1998) Demographic and growth responses of a guerrilla and a phalanx perennial grass in competitive mixtures. J Ecol 86:854–865. doi: 10.1046/j.1365-2745.1998.8650854.x CrossRefGoogle Scholar
  29. Husband BC (2000) Constraints on polyploid evolution: a test of the minority cytotype exclusion principle. Proc R Soc Lond B Biol Sci 267:217–223. doi: 10.1098/rspb.2000.0990 CrossRefGoogle Scholar
  30. Jiao Y, Wickett NJ, Ayyampalayam S et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100. doi: 10.1038/nature09916 CrossRefPubMedGoogle Scholar
  31. Johnson MTJ, Husband BC, Burton TL (2003) Habitat differentiation between diploid and tetraploid Galax urceolata (Diapensiaceae). Int J Plant Sci 164:703–710. doi: 10.1086/376813 CrossRefGoogle Scholar
  32. Jongejans E, Kroon H de, Berendse F (2006) The interplay between shifts in biomass allocation and costs of reproduction in four grassland perennials under simulated successional change. Oecologia 147:369–378. doi: 10.1007/s00442-005-0325-8 CrossRefPubMedGoogle Scholar
  33. Kalske A, Muola A, Laukkanen L et al (2012) Variation and constraints of local adaptation of a long-lived plant, its pollinators and specialist herbivores. J Ecol 100:1359–1372. doi: 10.1111/j.1365-2745.2012.02008.x CrossRefGoogle Scholar
  34. Kennedy BF, Sabara HA, Haydon D, Husband BC (2006) Pollinator-mediated assortative mating in mixed ploidy populations of Chamerion angustifolium (Onagraceae). Oecologia 150:398–408. doi: 10.1007/s00442-006-0536-7 CrossRefPubMedGoogle Scholar
  35. Kik C, Linders T, Bijlsma R (1993) Ploidy level and somatic chromosome-number variation in Agrostis stolonifera. Acta Bot Neerlandica 42:73–80CrossRefGoogle Scholar
  36. Laere KV, França SC, Vansteenkiste H et al (2011) Influence of ploidy level on morphology, growth and drought susceptibility in Spathiphyllum wallisii. Acta. Physiol Plant 33:1149–1156. doi: 10.1007/s11738-010-0643-2 Google Scholar
  37. Leitch AR, Leitch IJ (2012) Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytol 194:629–646. doi: 10.1111/j.1469-8137.2012.04105.x CrossRefPubMedGoogle Scholar
  38. Levin DA (1975) Minority cytotype exclusion in local plant populations. Taxon 24:35–43. doi: 10.2307/1218997 CrossRefGoogle Scholar
  39. Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, OxfordGoogle Scholar
  40. Li W-L, Berlyn GP, Ashton PMS (1996) Polyploids and their structural and physiological characteristics relative to water deficit in Betula papyrifera (Betulaceae). Am J Bot 83:15. doi: 10.2307/2445949 CrossRefGoogle Scholar
  41. Li W, Biswas DK, Xu H et al (2009) Photosynthetic responses to chromosome doubling in relation to leaf anatomy in Lonicera japonica subjected to water stress. Funct Plant Biol 36:783–792CrossRefGoogle Scholar
  42. Liancourt P, Tielbörger K, Bangerter S, Prasse R (2009) Components of “competitive ability” in the LHS model: Implication on coexistence for twelve co-occurring Mediterranean grasses. Basic Appl Ecol 10:707–714. doi: 10.1016/j.baae.2009.05.003 CrossRefGoogle Scholar
  43. Maceira NO, Jacquard P, Lumaret R (1993) Competition between diploid and derivative autotetraploid Dactylis glomerata L. from Galicia. Implications for the establishment of novel polyploid populations. New Phytol 124:321–328. doi: 10.1111/j.1469-8137.1993.tb03822.x CrossRefGoogle Scholar
  44. Maherali H, Walden AE, Husband BC (2009) Genome duplication and the evolution of physiological responses to water stress. New Phytol 184:721–731. doi: 10.1111/j.1469-8137.2009.02997.x CrossRefPubMedGoogle Scholar
  45. Mandáková T, Münzbergová Z (2008) Morphometric and genetic differentiation of diploid and hexaploid populations of Aster amellus agg. in a contact zone. Plant Syst Evol 274:155–170. doi: 10.1007/s00606-008-0040-0 CrossRefGoogle Scholar
  46. Manzaneda AJ, Rey PJ, Anderson JT et al (2015) Natural variation, differentiation, and genetic trade-offs of ecophysiological traits in response to water limitation in Brachypodium distachyon and its descendent allotetraploid B. hybridum (Poaceae). Evol Int J org Evol 69:2689–2704. doi: 10.1111/evo.12776 CrossRefGoogle Scholar
  47. Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–424. doi: 10.1126/science.264.5157.421 CrossRefPubMedGoogle Scholar
  48. Moles AT, Westoby M (2004) Seedling survival and seed size: a synthesis of the literature. J Ecol 92:372–383. doi: 10.1111/j.0022-0477.2004.00884.x CrossRefGoogle Scholar
  49. Münzbergová Z (2007) No effect of ploidy level in plant response to competition in a common garden experiment. Biol J Linn Soc 92:211–219. doi: 10.1111/j.1095-8312.2007.00820.x CrossRefGoogle Scholar
  50. Nuismer SL, Cunningham BM (2005) Selection for phenotypic divergence between diploid and autotetraploid Heuchera grossulariifolia. Evol Int J org Evol 59:1928–1935. doi: 10.1111/j.0014-3820.2005.tb01062.x CrossRefGoogle Scholar
  51. Ogden J (1974) The reproductive strategy of higher plants: II. The reproductive strategy of Tussilago farfara L. J Ecol 62:291–324. doi: 10.2307/2258894 CrossRefGoogle Scholar
  52. Oswald BP, Nuismer SL (2011) Neopolyploidy and diversification in Heuchera grossulariifolia. Evolution 65:1667–1679. doi: 10.1111/j.1558-5646.2010.01208.x CrossRefPubMedPubMedCentralGoogle Scholar
  53. Parisod C, Besnard G (2007) Glacial in situ survival in the Western Alps and polytopic autopolyploidy in Biscutella laevigata L. (Brassicaceae). Mol Ecol 16:2755–2767. doi: 10.1111/j.1365-294X.2007.03315.x CrossRefPubMedGoogle Scholar
  54. Raabová J, Fischer M, Münzbergová Z (2008) Niche differentiation between diploid and hexaploid Aster amellus. Oecologia 158:463–472. doi: 10.1007/s00442-008-1156-1 CrossRefPubMedGoogle Scholar
  55. Raabová J, Münzbergová Z, Fischer M (2011) The role of spatial scale and soil for local adaptation in Inula hirta. Basic Appl Ecol 12:152–160. doi: 10.1016/j.baae.2011.01.001 CrossRefGoogle Scholar
  56. Ramsey J (2011) Polyploidy and ecological adaptation in wild yarrow. Proc Natl Acad Sci 108:7096–7101. doi: 10.1073/pnas.1016631108 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ramsey J, Ramsey TS (2014) Ecological studies of polyploidy in the 100 years following its discovery. Phil Trans R Soc B 369:20130352. doi: 10.1098/rstb.2013.0352 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639. doi: 10.1146/annurev.ecolsys.33.010802.150437 CrossRefGoogle Scholar
  59. Richardson ML, Hanks LM (2011) Differences in spatial distribution, morphology, and communities of herbivorous insects among three cytotypes of Solidago altissima (Asteraceae). Am J Bot 98:1595–1601. doi: 10.3732/ajb.1100018 CrossRefPubMedGoogle Scholar
  60. Roach DA, Wulff RD (1987) Maternal effects in plants. Annu Rev Ecol Syst 18:209–235. doi: 10.1146/ CrossRefGoogle Scholar
  61. Schlaepfer DR, Edwards PJ, Billeter R (2010) Why only tetraploid Solidago gigantea (Asteraceae) became invasive: a common garden comparison of ploidy levels. Oecologia 163:661–673CrossRefPubMedGoogle Scholar
  62. Segraves KA, Thompson JN (1999) Plant polyploidy and pollination: Floral traits and insect visits to diploid and tetraploid Heuchera grossulariifolia. Evol Int J Org Evol 53:1114–1127. doi: 10.2307/2640816 CrossRefGoogle Scholar
  63. Segraves KA, Thompson JN, Soltis PS, Soltis DE (1999) Multiple origins of polyploidy and the geographic structure of Heuchera grossulariifolia. Mol Ecol 8:253–262. doi: 10.1046/j.1365-294X.1999.00562.x CrossRefGoogle Scholar
  64. Smith HE (1946) Sedum pulchellum: A physiological and morphological comparison of diploid, tetraploid, and hexaploid races. Bull Torrey Bot Club 73:495–541. doi: 10.2307/2481337 CrossRefGoogle Scholar
  65. Smith DS, Schweitzer JA, Turk P et al (2012) Soil-mediated local adaptation alters seedling survival and performance. Plant Soil 352:243–251. doi: 10.1007/s11104-011-0992-7 CrossRefGoogle Scholar
  66. Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352CrossRefPubMedGoogle Scholar
  67. Soltis DE, Buggs RJA, Doyle JJ, Soltis PS (2010) What we still don’t know about polyploidy. Taxon 59:1387–1403Google Scholar
  68. Ståhlberg D (2007) Habitat differentiation, hybridization and gene flow patterns in mixed populations of diploid and autotetraploid Dactylorhiza maculata s.l. (Orchidaceae). Evol Ecol 23:295–328. doi: 10.1007/s10682-007-9228-y CrossRefGoogle Scholar
  69. Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, LondonGoogle Scholar
  70. Thébault A, Gillet F, Müller-Schärer H, Buttler A (2010) Polyploidy and invasion success: trait trade-offs in native and introduced cytotypes of two Asteraceae species. Plant Ecol 212:315–325. doi: 10.1007/s11258-010-9824-8 CrossRefGoogle Scholar
  71. Thompson KA, Husband BC, Maherali H (2014) Climatic niche differences between diploid and tetraploid cytotypes of Chamerion angustifolium (Onagraceae). Am J Bot 101:1868–1875. doi: 10.3732/ajb.1400184 CrossRefPubMedGoogle Scholar
  72. Thompson KA, Husband BC, Maherali H (2015) No influence of water limitation on the outcome of competition between diploid and tetraploid Chamerion angustifolium (Onagraceae). J Ecol 103:733–741. doi: 10.1111/1365-2745.12384 CrossRefGoogle Scholar
  73. Till-Bottraud I, Wu L, Harding J (1990) Rapid evolution of life history traits in populations of Poa annua L. J Evol Biol 3:205–224. doi: 10.1046/j.1420-9101.1990.3030205.x CrossRefGoogle Scholar
  74. Trávníček P, Eliášová A, Suda J (2010) The distribution of cytotypes of Vicia cracca in Central Europe: the changes that have occurred over the last four decades. Preslia 82:149–163Google Scholar
  75. Trojak-Goluch A, Skomra U (2013) Artificially induced polyploidization in Humulus lupulus L. and its effect on morphological and chemical traits. Breed Sci 63:393–399. doi: 10.1270/jsbbs.63.393 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Urwin NAR, Horsnell J, Moon T (2007) Generation and characterisation of colchicine-induced autotetraploid Lavandula angustifolia. Euphytica 156:257–266. doi: 10.1007/s10681-007-9373-yVan CrossRefGoogle Scholar
  77. van Kleunen M, Fischer M, Schmid B (2002) Experimental life-history evolution: selection on the allocation to sexual reproduction and its plasticity in a clonal plant. Evol Int J Org Evol 56:2168–2177CrossRefGoogle Scholar
  78. Weissmannová H et al (2004) Ostravsko. In: Mackovčin P, Sedláček M (eds) Chráněná území ČR, Vol. X. Agentura ochrany přírody a krajiny and EkoCentrum Brno, PragueGoogle Scholar
  79. Westoby M, Leishman M, Lord J, et al (1996) Comparative ecology of seed size and dispersal [and Discussion]. Philos Trans R Soc Lond B Biol Sci 351:1309–1318. doi: 10.1098/rstb.1996.0114 CrossRefGoogle Scholar
  80. Whitney KD, Baack EJ, Hamrick JL et al (2010) A role for nonadaptive processes in plant genome size evolution? Evol Int J Org Evol 64:2097–2109. doi: 10.1111/j.1558-5646.2010.00967.x Google Scholar
  81. Wood TE, Takebayashi N, Barker MS, et al (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci 106:13875–13879. doi: 10.1073/pnas.0811575106 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zozomová-Lihová J, Malánová-Krásná I, Vít P et al (2015) Cytotype distribution patterns, ecological differentiation, and genetic structure in a diploid–tetraploid contact zone of Cardamine amara. Am J Bot 102:1380–1395. doi: 10.3732/ajb.1500052 CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2017

Authors and Affiliations

  1. 1.Department of Botany, Faculty of ScienceCharles University in PraguePragueCzech Republic
  2. 2.Institute of BotanyAcademy of Sciences of the Czech RepublicPrůhoniceCzech Republic

Personalised recommendations