Journal of Plant Research

, Volume 130, Issue 4, pp 735–745 | Cite as

Drought-induced expression of aquaporin genes in leaves of two common bean cultivars differing in tolerance to drought stress

  • Mateja Zupin
  • Aleš Sedlar
  • Marjetka Kidrič
  • Vladimir Meglič
Regular Paper

Abstract

Aquaporin proteins are part of the complex response of common bean (Phaseolus vulgaris L.) to drought which affects the quality and quantity of yield of this important crop. To better understand the role of aquaporins in common bean, drought-induced gene expression of several aquaporins was determined in two cultivars, the more drought tolerant Tiber and the less tolerant Starozagorski čern. The two bean cultivars were selected among 16 European genotypes based on the tolerance to drought determined by time needed for plants to wilt after withholding irrigation and yield at harvest. The expression patterns of two plasma membrane intrinsic proteins, PvPIP1;2 and PvPIP2;7, and two tonoplast intrinsic proteins, PvTIP1;1 and PvTIP4;1 in leaves of 21 day old plants were determined by RT-qPCR in both cultivars under three degrees of drought stress, and under rehydration and control conditions. Gene expression of all four examined aquaporins was down-regulated in drought stressed plants. After rehydration it returned to the level of control plants or was even higher. The responses of PvPIP2;7 and PvTIP1;1 during drought and rehydration were particularly pronounced. The gene expression of PvPIP2;7 and PvTIP4;1 during drought was cultivar specific, with greater down-regulation of these two aquaporins in drought tolerant Tiber. Under drought stress the relative water content and water potential of leaves were higher in Tiber than in Starozagorski plants. The differences in these physiological parameters indicate greater prevention of water loss in Tiber during drought, which may be associated with rapid and adequate down-regulation of aquaporins. These results suggest that the ability of plants to conserve water during drought stress involves timely and sufficient down-regulation of gene expression of specific aquaporins.

Keywords

Aquaporins Drought Gene expression Common bean 

Supplementary material

10265_2017_920_MOESM1_ESM.docx (247 kb)
Supplementary material 1 (DOCX 246 KB)

References

  1. Afzal Z, Howton TC, Sun Y, Mukhtar MS (2016) The roles of aquaporins in plant stress responses. J Dev Biol 4:9. doi:10.3390/jdb4010009 CrossRefGoogle Scholar
  2. Alexandersson E, Fraysse L, Sjövall-Larsen S et al (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484. doi:10.1007/s11103-005-0352-1 CrossRefPubMedGoogle Scholar
  3. Ariani A, Gepts P (2015) Genome-wide identification and characterization of aquaporin gene family in common bean (Phaseolus vulgaris L.). Mol Genet Genom 290:1771–1785. doi:10.1007/s00438-015-1038-2 CrossRefGoogle Scholar
  4. Aroca R, Ferrante A, Vernieri P, Chrispeels MJ (2006) Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants. Ann Bot 98:1301–1310. doi:10.1093/aob/mcl219 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Beaver JS, Osorno JM (2009) Achievements and limitations of contemporary common bean breeding using conventional and molecular approaches. Euphytica 168:145–175. doi:10.1007/s10681-009-9911-x CrossRefGoogle Scholar
  6. Beebe SE, Rao IM, Blair MW, Acosta-Gallegos (2013) Phenotyping common beans for adaptation to drought. Front Physiol 4:35. doi:10.3389/fphys.2013.00035 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Blum A (2015) Towards a conceptual ABA ideotype in plant breeding for water limited environments. Func Plant Biol 42:502–513. doi:10.1071/FP14334 CrossRefGoogle Scholar
  8. Borges A, Tsai SM, Caldas DGG (2012) Validation of reference genes for RT-qPCR normalization in common bean during biotic and abiotic stresses. Plant Cell Rep 31:827–838. doi:10.1007/s00299-011-1204-x CrossRefPubMedGoogle Scholar
  9. Boursiac Y, Chen S, Luu D-T et al (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol 139:790–805. doi:10.1104/pp.105.065029 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Broughton WJ, Hernández G, Blair M et al (2003) Beans (Phaseolus spp.)—model food legumes. Plant Soil 252:55–128. doi:10.1023/A:1024146710611 CrossRefGoogle Scholar
  11. Chaumont F, Tyerman SD (2014) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164:1600–1618. doi:10.1104/pp.113.233791 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Galmés J, Pou A, Alsina MM, et al (2007) Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status. Planta 226:671–681. doi:10.1007/s00425-007-0515-1 CrossRefPubMedGoogle Scholar
  13. Gomes D, Agasse A, Thiébaud P et al (2009) Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim Biophys Acta 1788:1213–1228. doi:10.1016/j.bbamem.2009.03.009 CrossRefPubMedGoogle Scholar
  14. Heckwolf M, Pater D, Hanson DT, Kaldenhoff R (2011) The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO2 transport facilitator. Plant J 67:795–804. doi:10.1111/j.1365-313X.2011.04634.x CrossRefPubMedGoogle Scholar
  15. Johanson U, Karlsson M, Johansson I et al (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369. doi:10.1104/pp.126.4.1358 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Li G, Santoni V, Maurel C (2014) Plant aqauporins: roles in plant physiology. Biochim Biophys Acta 1840:1574–1582. doi:10.1016/j.bbagen.2013.11.004 CrossRefPubMedGoogle Scholar
  17. Lian HL, Yu X, Lane D et al (2006) Upland rice and lowland rice exhibited different PIP expression under water deficit and ABA treatment. Cell Res 16:651–660. doi:10.1038/sj.cr.7310068 CrossRefPubMedGoogle Scholar
  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408. doi:10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  19. Martinez-Ballesta MC, Carvajal M (2014) New challenges in plant aquaporin biotechnology. Plant Sci 217–218:71–77. doi:10.1016/j.plantsci.2013.12.006 CrossRefGoogle Scholar
  20. Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624. doi:10.1146/annurev.arplant.59.032607.092734 CrossRefPubMedGoogle Scholar
  21. Miklas PN, Kelly JD, Beebe SE, Blair MW (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:105–131. doi:10.1007/s10681-006-4600-5 CrossRefGoogle Scholar
  22. Montalvo-Hernández L, Piedra-Ibarra E, Gómez-Silva L et al (2008) Differential accumulation of mRNAs in drought-tolerant and susceptible common bean cultivars in response to water deficit. New Phytol 177:102–113. doi:10.1111/j.1469-8137.2007.02247.x PubMedGoogle Scholar
  23. Park WJ, Campbell BT (2015) Aquaporins as targets for stress tolerance in plants: genomic complexity and perspectives. Turk J Bot 39:879–886. doi:10.3906/bot-1505-25 CrossRefGoogle Scholar
  24. Park W, Scheffler BE, Bauer PJ, Campbell BT (2010) Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biol 10:142. doi:10.1186/1471-2229-10-142 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Polania JA, Poschenrieder C, Beebe S, Rao IM (2016) Effective use of water and increased dry matter partitioned to grain contribute to yield of common bean improved for drought resistance. Front Plant Sci 7:660. doi:10.3389/fpls.2016.00660 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Qian Z-J, Song J-J, Chaumont F, Ye Q (2015) Differential responses of plasma membrane aquaporins in mediating water transport of cucumber seedlings under osmotic and salt stresses. Plant Cell Environ 38:461–473. doi:10.1111/pce.12319 CrossRefPubMedGoogle Scholar
  27. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  28. Recchia GH, Caldas DGG, Beraldo ALA et al (2013) Transcriptional analysis of drought-induced genes in the roots of a tolerant genotype of the common bean (Phaseolus vulgaris L.). Int J Mol Sci 14:7155–7179. doi:10.3390/ijms14047155 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sade N, Vinocur BJ, Diber A et al (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion? New Phytol 181:651–661. doi:10.1111/j.1469-8137.2008.02689.x CrossRefPubMedGoogle Scholar
  30. Sakurai J, Ishikawa F, Yamaguchi T et al (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577. doi:10.1093/pcp/pci172 CrossRefPubMedGoogle Scholar
  31. Schmutz J, McClean PE, Mamidi S et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713. doi:10.1038/ng.3008 CrossRefPubMedGoogle Scholar
  32. Scholander PF, Bradstreet ED, Hemmingsen EA, Hammel HT (1965) Sap pressure in vascular plants. Science 148:339–346. doi:10.1126/science.148.3668.339 CrossRefPubMedGoogle Scholar
  33. Šurbanovski N, Sargent DJ, Else MA, et al (2013) Expression of Fragaria vesca PIP aquaporins in response to drought stress: PIP down-regulation correlates with the decline in substrate moisture content. PloS One 8:e74945. doi:10.1371/journal.pone.0074945 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Šuštar-Vozlič J, Maras M, Javornik B, Meglič V (2006) Genetic diversity and origin of Slovene common bean (Phaseolus vulgaris L.) germplasm as revealed by AFLP markers and phaseolin analysis. J Am Soc Hortic Sci 131:242–249Google Scholar
  35. Trejo CL, Davies WJ (1991) Drought-induced closure of Phaseoulus vulgaris L. stomata precedes leaf water deficit and any increase in xylem ABA concentration. J Exp Bot 42:1507–1515. doi:10.1093/jxb/42.12.1507 CrossRefGoogle Scholar
  36. Uehlein N, Sperling H, Heckwolf M, Kaldenhoff R (2012) The Arabidopsis aquaporin PIP1;2 rules cellular CO(2) uptake. Plant Cell Environ 35:1077–1083. doi:10.1111/j.1365-3040.2011.02473.x CrossRefPubMedGoogle Scholar
  37. Vandeleur RK, Mayo G, Shelden MC et al (2009) The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol 149:445–460. doi:10.1104/pp.108.128645 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Vandesompele J, De Preter K, Pattyn F, et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034CrossRefPubMedPubMedCentralGoogle Scholar
  39. Vera-Estrella R, Barkla BJ, Bohnert HJ, Pantoja O (2004) Novel regulation of aquaporins during osmotic stress. Plant Physiol 135:2318–2329. doi:10.1104/pp.104.044891 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Wakrim R, Wahbi S, Tahi H, et al (2005) Comparative effects of partial root drying (PRD) and regulated deficit irrigation (RDI) on water relations and water use efficiency in common bean (Phaseoulus vulgaris L.). Agric Ecosyst Environ 106:275–287. doi:10.1016/j.agee.2004.10.019 CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2017

Authors and Affiliations

  • Mateja Zupin
    • 1
  • Aleš Sedlar
    • 1
  • Marjetka Kidrič
    • 2
  • Vladimir Meglič
    • 1
  1. 1.Crop Science DepartmentAgricultural Institute of SloveniaLjubljanaSlovenia
  2. 2.Department of BiotechnologyJožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations