Skip to main content

The influence of slope on Spartium junceum root system: morphological, anatomical and biomechanical adaptation


Root systems have a pivotal role in plant anchorage and their mechanical interactions with the soil may contribute to soil reinforcement and stabilization of slide-prone slopes. In order to understand the responses of root system to mechanical stress induced by slope, samples of Spartium junceum L., growing in slope and in plane natural conditions, were compared in their morphology, biomechanical properties and anatomical features. Soils sampled in slope and plane revealed similar characteristics, with the exception of organic matter content and penetrometer resistance, both higher in slope. Slope significantly influenced root morphology and in particular the distribution of lateral roots along the soil depth. Indeed, first-order lateral roots of plants growing on slope condition showed an asymmetric distribution between up- and down-slope. Contrarily, this asymmetric distribution was not observed in plants growing in plane. The tensile strength was higher in lateral roots growing up-slope and in plane conditions than in those growing down-slope. Anatomical investigations revealed that, while roots grown up-slope had higher area covered by xylem fibers, the ratio of xylem and phloem fibers to root diameter did not differ among the three conditions, as also, no differences were found for xylem fiber cell wall thickness. Roots growing up-slope were the main contributors to anchorage properties, which included higher strength and higher number of fibers in the xylematic tissues. Results suggested that a combination of root-specific morphological, anatomical and biomechanical traits, determines anchorage functions in slope conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  • Bengough AG, Bransby MF, Hans J, McKenna SJ, Roberts TJ, Valentine TA (2006) Root responses to soil physical conditions; growth dynamics from field to cell. J Exp Bot 57:437–447

    CAS  Article  PubMed  Google Scholar 

  • Bengough AG, Mullins CE (1990) Mechanical impedance to root growth-a review of experimental techniques and root growth responses. J Soil Sci 41:341–358

    Article  Google Scholar 

  • Bécel C, Vercambre G, Pagès L (2012) Soil penetration resistance, a suitable soil property to account for variations in root elongation and branching. Plant Soil 353:169–180

    Article  Google Scholar 

  • Chiatante D, Tognetti R, Scippa GS, Congiu T, Baesso B, Terzaghi M, Montagnoli A (2015) Interspecific variation in functional traits of oak seedlings (Quercus ilex, Quercus trojana, Quercus virgiliana) grown under artificial drought and fire conditions. J Plant Res 128:595–611

    CAS  Article  PubMed  Google Scholar 

  • Chiatante D, Sarnataro M, Fusco S, Di Iorio A, Scippa GS (2003) Modification of root morphological parameters and root architecture in seedlings of Fraxinus ornus L. and Spartium junceum L. growing on slopes. Plant Biosyst 137:47–56

  • Chiatante D, Di Iorio A, Scippa GS (2005) Root responses of Quercus ilex L. seedlings to drought and fire. Plant Biosyst 139:198–208

  • Chiatante D, Beltotto M, Onelli E, Di iorio A, Montagnoli A, Scippa GS (2010) New branch roots produced by vascular cambium derivatives in woody parental roots of Populus nigra L. Plant Biosyst 144:420–433

  • Côté WA, Day AC, Timell TE (1969) A contribution to the ultrastructure of tension wood fibers. Wood Sci Technol 3:257–271

    Article  Google Scholar 

  • Dagnelie P (1975) Théorie et Méthodes Statistiques, Volume 2. Les Presses Agronomiques De Gembloux, A.S.B.L., Gembloux, Belgique, p. 463

  • Dagnelie P (1973) Théorie et Méthodes Statistiques, Volume 1. Les Presses Agronomiques De Gembloux, A.S.B.L., Gembloux, Belgique, p. 378

  • Danjon F, Caplan JS, Fortin M, Meredieu C (2013) Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster. Front Plant Sci 4:402 10.3389/fpls.2013.00402

  • De Zio E, Trupiano D, Montagnoli A, Terzaghi M, Chiatante D, Grosso A, Marra M, Scaloni A, Scippa GS (2016) Poplar woody taproot under bending stress: the asymmetric response of the convex and concave sides. Ann Bot. doi:10.1093/aob/mcw159

    PubMed  PubMed Central  Google Scholar 

  • Di Iorio A, Lasserre B, Petrozzi L, Scippa GS, Chiatante (2008) Adaptive longitudinal growth of first-order lateral roots of a woody species (Spartium junceum L.) to slope and different soil conditions-upward growth of surface roots. Environ Exp Bot 63:207–215

    Article  Google Scholar 

  • Di Iorio A, Lasserre B, Scippa GS, Chiatante D (2005) Root system of Quercus pubescens trees growing on different sloping conditions. Ann Bot 95:351–361

    Article  PubMed  Google Scholar 

  • Ebrahimi E, Bodner G, Kaul H-P, Dabbagh Mohammadi Nassab A (2014) Effects of water supply on root traits and biological yield of Durum (Triticum durum Desf.) and Khorasan (Triticum turanicum Jakubz) wheat. Plant Biosyst 148:1009–1015

  • Ennos AR (1994) The biomechanics of root anchorage. Biomimetics 2:129–137

  • Gartner BL (1994) Root biomechanics and whole-plant allocation patterns, responses of tomato plants to stem flexure. J Exp Bot 45:1647–1654

    CAS  Article  Google Scholar 

  • Genet M, Li M, Luo TX, Fourcaud T, Clement Vidal A, Stokes A (2011) Linking carbon supply to root cell wall chemistry and mechanics at high altitudes in Abies georgei. Ann Bot 107:311–320

    CAS  Article  PubMed  Google Scholar 

  • Genet M, Stokes A, Salin F, Mickovski SB, Fourcaud T, Dumail JF, Beek R (2005) The influence of cellulose content on tensile strength in tree roots. Plant Soil 278:1–9

    CAS  Article  Google Scholar 

  • Goodman AM, Crook MJ, Ennos AR (2001) Anchorage mechanics of the tap root system of winter-sown oilseed rape (Brassica napus L.). Ann Bot 87:397–404

    Article  Google Scholar 

  • Greenway DR (1987) Vegetation and slope stability. In: Anderson MG, Richards KS (eds) Slope Stability. John Wiley and Sons Ltd., New York, pp 187–230

    Google Scholar 

  • Hales TC, Ford CR, Hwang T, Vose JM, Band LE (2009) Topographic and ecologic controls on root reinforcement. J Geophys Res, 114 (F3) doi:10.1029/2008JF001168

    Google Scholar 

  • Hathaway RL, Penny D (1975) Root strength in some Populus and Salix clones. N Z J Bot 13:333–344

    CAS  Article  Google Scholar 

  • Jaffe MJ, Biro R (1979) Thigmomorphogenesis, the effect of mechanical perturbation on the growth of plants, with special reference to anatomical changes, the role of ethylene and interactions with other environmental stresses. In: Mussell H, Staples R (eds) Stress physiology in crop plants. Wiley and Sons, New York, pp 25–69

    Google Scholar 

  • Laskowski M, Grieneisen VA, Hofhuis H, Hove CA, Hogeweg P, Maree AF, Scheres B (2008) Root system architecture from coupling cell shape to auxin transport. PLoS Biol 6:e307

  • Long F, Sunb HL, Li SC (2011) Influence of rocky slope gradient on root anchorage of Vitex negundo L. Plant Biosyst 145:532–539

  • Marler TE, Discekici HM (1997) Root development of ‘Red Lady’ papaya to plants grown on a hillside. Plant Soil 195:37–42

    CAS  Article  Google Scholar 

  • Marziliano PA, Lafortezza R, Medicamento U, Lorusso L, Giannico V, Colangelo G, Sanesi G (2015) Estimating belowground biomass and root/shoot ratio of Phillyrea latifolia L. in the Mediterranean forest landscapes. Ann For Sci 72:585–593

    Article  Google Scholar 

  • Montagnoli A, Di Iorio A, Terzaghi M, Trupiano D, Scippa GS, Chiatante D (2014a) Influence of soil temperature and water content on fine-root seasonal growth of European beech natural forest in Southern Alps, Italy. Eur J Forest Res 133:957–968

    Article  Google Scholar 

  • Montagnoli A, Terzaghi M, Di Iorio A, Scippa GS, Chiatante D (2012) Fine-root morphological and growth traits in a Turkey-oak stand in relation to seasonal changes in soil moisture in the Southern Apennines, Italy. Ecol Res 27:1015–1025

    Article  Google Scholar 

  • Montagnoli A, Terzaghi M, Baesso B, Santamaria R, Scippa GS, Chiatante D (2016) Drought and fire stress influence seedling competition in oak forests: fine-root dynamics as indicator of adaptation strategies to climate change. Reforesta 1:86–105

  • Naghdi R, Maleki S, Abdi E, Mousavi R, Nikooy M (2013) Assessing the effect of Alnus roots on hillslope stability in order to use in soil bioengineering. J For Sci 59:417–423

    Article  Google Scholar 

  • Niklas KJ, Molina-Freaner F, Tinoco-Ojangueren C, Paolillo DJ (2000) Wood biomechanics and anatomy of Pachycereus pringlei. Am J Bot 87:469–481

    CAS  Article  PubMed  Google Scholar 

  • Oladokun MA, Ennos AR (2006) Structural development and stability of rice Oryza sativa L. var. Nerica 1. J Exp Bot 57:3123–3130

    CAS  Article  PubMed  Google Scholar 

  • Richter GL, Monshausen GB, Krol A, Gilroy S (2009) Mechanical stimuli modulate lateral root organogenesis. Plant Physiol 151:1855–1866

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Rosell JA, Olson ME (2007) Testing implicit assumptions regarding the age vs. size dependence of stem biomechanics using Pittocaulon (Senecio) praecox (Asteraceae). Am J Bot 94:161–172

    Article  PubMed  Google Scholar 

  • Rossi M, Trupiano D, Tamburro M, Ripabelli G, Montagnoli A, Chiatante D, Scippa GS (2015) MicroRNAs expression patterns in the response of poplar woody root to bending stress. Planta 242:339–351

    CAS  Article  PubMed  Google Scholar 

  • Sanesi G, Lafortezza R, Colangelo G, Marziliano PA, Davies C (2013) Root system investigation in sclerophyllous vegetation: an overview. Ital J Agron 8:e17

  • Schiechtl H (1980) Bioengineering for land reclamation and conservation. University of Alberta Press, Edmonton, p 404

    Google Scholar 

  • Scippa GS, Di Michele M, Di Iorio A, Costa A, Lasserre B, Chiatante D (2006) The response of Spartium junceum roots to slope: anchorage and gene factors. Ann Bot 97:857–866

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Soil Survey Division Staff (1993) Soil Survey Manual. United States Department of Agriculture Handbook No. 18. Washington D.C., 437 p.

  • Sprent P (1992) Pratique de statistique non paramétriques. INRA, Paris, p 294

    Google Scholar 

  • Stokes A, Nicoll BC,·Coutts MP,·Fitter AH (1997) Responses of young Sitka spruce clones to mechanical perturbation and nutrition: Effects on biomass allocation, root development, and resistance to bending. Can J For Res 27:1049–1057

    Article  Google Scholar 

  • Stokes A, Atger C, Glyn Bengough A, Fourcaud T, Sidle RC (2009) Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 324:1–30

    CAS  Article  Google Scholar 

  • Stokes A, Fitter AH, Coutts MP (1995) Responses of young trees to wind and shading: effects on root architecture. J Exp Bot 46:1139–1146

    CAS  Article  Google Scholar 

  • Stokes A, Guitard D (1997) Tree root response to mechanical tress. Biology of root formation. Plenum Press, New York, pp 227–236

    Google Scholar 

  • Sumida A, Terazawa I, Togashi A, Komiyama A (2002) Spatial arrangement of branches in relation to slope and neighbourhood competition. Ann Bot 89:301–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun HL, Li SC, Xiongc WL, Yanga ZR, Cuib BS, Yangc T (2008) Influence of slope on root system anchorage of Pinus yunnanensis. Ecol Eng 32:60–77

    Article  Google Scholar 

  • Telewski FV (1995) Wind induced physiological and developmental responses in trees. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, pp. 237–263

  • Terzaghi M, Di Iorio A, Montagnoli A, Baesso B, Scippa GS, Chiatante D (2016) Forest canopy reduction stimulates xylem production and lowers carbon concentration in fine roots of European beech. For Ecol Manage 379:81–90

  • Timell TE (1986) Compression wood in Gymnosperms. Springer Verlag, Berlin

    Book  Google Scholar 

  • Trupiano D, Rocco M, Renzone G, Scaloni A, Viscosi V, Chiatante D, Scippa GS (2012) The proteome of Populus nigra woody root: response to bending. Ann Bot 110:415–432

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • USDA (1998) USDA, Keys to Soil Taxonomy (eighth ed.), USDA, Natural Resources Conservation service (NRCS), Washington, D.C

  • Vergani C, Schwarz M, Cohen D, Thormann JJ, Bischetti GB (2014) Effects of root tensile force and diameter distribution variability on root reinforcement in the Swiss and Italian Alps. Can J For Res 44:1426–1440

    Article  Google Scholar 

  • Whitehead FH, Luti R (1962) Experimental studies of the effect of wind on plant growth and anatomy. New Phytol 61:58–59

    Google Scholar 

Download references


We thank Dr. Maria Sarnataro for the soil survey and classification, and for her help with the measurements of soil resistance to penetration. We also thank Dr. Solena Sciandra for her support in field activities and lab analyses. We gratefully acknowledge two anonymous reviewers for their comments that helped to improve the manuscript. This work was supported in part by grants from MIUR (PRIN 2008 n. 223 Project Coordinator Prof. D. Chiatante), the University of Insubria (FAR) and the EC FP7 Project ZEPHYR-308313. Particular thanks to Michela di Michele, for her precious support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Fabio Lombardi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lombardi, F., Scippa, G.S., Lasserre, B. et al. The influence of slope on Spartium junceum root system: morphological, anatomical and biomechanical adaptation. J Plant Res 130, 515–525 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • First-order lateral roots
  • Mechanical stresses
  • Slope condition
  • Tensile strength
  • Spartium junceum L.
  • Wood anatomy