Journal of Plant Research

, Volume 130, Issue 3, pp 433–441 | Cite as

Dynamic reorganization of the endomembrane system during spermatogenesis in Marchantia polymorpha

  • Naoki Minamino
  • Takehiko Kanazawa
  • Ryuichi Nishihama
  • Katsuyuki T. Yamato
  • Kimitsune Ishizaki
  • Takayuki Kohchi
  • Akihiko Nakano
  • Takashi Ueda
JPR Symposium Fusion in Fertilization: Interdisciplinary Collaboration among Plant and Animal Scientists

Abstract

The processes involved in sexual reproduction have been diversified during plant evolution. Whereas charales, bryophytes, pteridophytes, and some gymnosperms utilize motile sperm as male gametes, in other gymnosperms and angiosperms the immotile sperm cells are delivered to the egg cells through elongated pollen tubes. During formation of the motile sperms, cells undergo a dynamic morphological transformation including drastic changes in shape and the generation of locomotor architecture. The molecular mechanism involved in this process remains mostly unknown. Membrane trafficking fulfills the exchange of various proteins and lipids among single membrane-bound organelles in eukaryotic cells, contributing to various biological functions. RAB GTPases and SNARE proteins are evolutionarily conserved key machineries of membrane trafficking mechanisms, which regulate tethering and fusion of the transport vesicles to target membranes. Our observation of fluorescently tagged plasma membrane-resident SNARE proteins demonstrated that these proteins relocalize to spherical structures during the late stages in spermiogenesis. Similar changes in subcellular localization were also observed for other fluorescently tagged SNARE proteins and a RAB GTPase, which acts on other organelles including the Golgi apparatus and endosomes. Notably, a vacuolar SNARE, MpVAMP71, was localized on the membrane of the spherical structures. Electron microscopic analysis revealed that there are many degradation-related structures such as multi-vesicular bodies, autophagosomes, and autophagic bodies containing organelles. Our results indicate that the cell-autonomous degradation pathway plays a crucial role in the removal of membrane components and the cytoplasm during spermiogenesis of Marchantia polymorpha. This process differs substantially from mammalian spermatogenesis in which phagocytic removal of excess cytoplasm involves neighboring cells.

Keywords

Marchantia polymorpha Spermatogenesis Endocytosis Autophagy Vacuole 

Supplementary material

10265_2017_909_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 KB)

References

  1. Carothers ZB, Kreitner GL (1968) Studies of spermatogenesis in the Hepaticae. II. Blepharoplast structure in the spermatid of Marchantia. J Cell Biol 36:603–616CrossRefPubMedPubMedCentralGoogle Scholar
  2. Chiyoda S, Ishizaki K, Kataoka H, Yamato KT, Kohchi T (2008) Direct transformation of the liverwort Marchantia polymorpha L. by particle bombardment using immature thalli developing from spores. Plant Cell Rep 27:1467–1473. doi:10.1007/s00299-008-0570-5 CrossRefPubMedGoogle Scholar
  3. Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD (2002) The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J Biol Chem 277:33105–33114. doi:10.1074/jbc.M204630200 CrossRefPubMedGoogle Scholar
  4. Fujimoto M, Ueda T (2012) Conserved and plant-unique mechanisms regulating plant post-Golgi traffic. Front Plant Sci 3:197. doi:10.3389/fpls.2012.00197 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Graham LE, McBride GE (1979) The occurrence and phylogenetic significance of a multilayered structure in Coleochaete spermatozoids. Am J Botany 66:887–894CrossRefGoogle Scholar
  6. Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276:29188–29194. doi:10.1074/jbc.M102815200 CrossRefPubMedGoogle Scholar
  7. Hanamata S, Kurusu T, Kuchitsu K (2014) Roles of autophagy in male reproductive development in plants. Front Plant Sci 5:457. doi:10.3389/fpls.2014.00457 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hanaoka H et al (2002) Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol 129:1181–1193. doi:10.1104/pp.011024 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hatsugai N et al. (2009) A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes Dev 23:2496–2506. doi:10.1101/gad.1825209 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21:77–91. doi:10.1016/j.devcel.2011.05.015 CrossRefPubMedGoogle Scholar
  11. Higo A et al. (2016) Transcriptional framework of male gametogenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol 57:325–338. doi:10.1093/pcp/pcw005 CrossRefPubMedGoogle Scholar
  12. Ishizaki K, Chiyoda S, Yamato KT, Kohchi T (2008) Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol 49:1084–1091. doi:10.1093/pcp/pcn085 CrossRefPubMedGoogle Scholar
  13. Ishizaki K et al (2015) Development of gateway binary vector series with four different selection markers for the liverwort Marchantia polymorpha. PloS One 10:e0138876. doi:10.1371/journal.pone.0138876 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ishizaki K, Nishihama R, Yamato KT, Kohchi T (2016) Molecular genetic tools and techniques for Marchantia polymorpha research. Plant Cell Physiol 57:262–270. doi:10.1093/pcp/pcv097 CrossRefPubMedGoogle Scholar
  15. Kanazawa T et al. (2016) SNARE molecules in Marchantia polymorpha: unique and conserved features of the membrane fusion machinery. Plant Cell Physiol 57:307–324. doi:10.1093/pcp/pcv076 CrossRefPubMedGoogle Scholar
  16. Kubota A, Ishizaki K, Hosaka M, Kohchi T (2013) Efficient agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Biosci Biotechnol Biochem 77:167–172. doi:10.1271/bbb.120700 CrossRefPubMedGoogle Scholar
  17. Kurusu T et al (2014) OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development. Autophagy 10:878–888. doi:10.4161/auto.28279 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lai Z, Wang F, Zheng Z, Fan B, Chen Z (2011) A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant J 66:953–968. doi:10.1111/j.1365-313X.2011.04553.x CrossRefPubMedGoogle Scholar
  19. Li Y, Wang FH, Knox RB (1989) Ultrastructural analysis of the flagellar apparatus in sperm cells of ginkgo-biloba. Protoplasma 149:57–63. doi:10.1007/Bf01623983 CrossRefGoogle Scholar
  20. Liu Y, Xiong Y, Bassham DC (2014) Autophagy is required for tolerance of drought and salt stress in plants. Autophagy 5:954–963. doi:10.4161/auto.5.7.9290 CrossRefGoogle Scholar
  21. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741. doi:10.1016/j.cell.2011.10.026 CrossRefPubMedGoogle Scholar
  22. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467. doi:10.1038/nrm2708 CrossRefPubMedGoogle Scholar
  23. O’Donnell L, Nicholls PK, O’Bryan MK, McLachlan RI, Stanton PG (2011) Spermiation: The process of sperm release. Spermatogenesis 1:14–35. doi:10.4161/spmg.1.1.14525
  24. Renzaglia KS, Duckett JG (1987) Spermatogenesis in Blasia pusilla: from young antheridium through mature spermatozoid. Bryologist 90:419. doi:10.2307/3243109 CrossRefGoogle Scholar
  25. Renzaglia KS, Garbary DJ (2001) Motile gametes of land plants: diversity, development, and evolution. Crit Rev Plant Sci 20:107–213. doi:10.1080/20013591099209 CrossRefGoogle Scholar
  26. Saito C, Ueda T (2009) Chap. 4: functions of RAB and SNARE proteins in plant life. Int Rev Cell Mol Biol 274:183–233. doi:10.1016/S1937-6448(08)02004-2 CrossRefPubMedGoogle Scholar
  27. Sanderfoot A (2007) Increases in the number of SNARE genes parallels the rise of multicellularity among the green plants. Plant Physiol 144:6–17. doi:10.1104/pp.106.092973 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909. doi:10.1038/nmeth819 CrossRefPubMedGoogle Scholar
  29. Shimamura M (2016) Marchantia polymorpha: taxonomy, phylogeny and morphology of a model system. Plant Cell Physiol 57:230–256. doi:10.1093/pcp/pcv192 CrossRefPubMedGoogle Scholar
  30. Ueda K (1979) Denshikenbikyou de Mita Syokubutsu no Kouzou. Baishukan, Tokyo, pp 220–237 (in Japanese) Google Scholar
  31. Uemura T (2016) Physiological roles of plant post-golgi transport pathways in membrane trafficking. Plant Cell Physiol doi:10.1093/pcp/pcw149 Google Scholar
  32. van der Sluijs P, Zibouche M, van Kerkhof P (2013) Late steps in secretory lysosome exocytosis in cytotoxic lymphocytes. Front Immunol 4:359. doi:10.3389/fimmu.2013.00359 PubMedPubMedCentralGoogle Scholar
  33. Vaughn KC, Renzaglia KS (2006) Structural and immunocytochemical characterization of the Ginkgo biloba L. sperm motility apparatus. Protoplasma 227:165–173. doi:10.1007/s00709-005-0141-3 CrossRefPubMedGoogle Scholar
  34. Yoshimoto K (2012) Beginning to understand autophagy, an intracellular self-degradation system in plants. Plant Cell Physiol 53:1355–1365. doi:10.1093/pcp/pcs099 CrossRefPubMedGoogle Scholar
  35. Zhen Y, Stenmark H (2015) Cellular functions of Rab GTPases at a glance. J Cell Sci 128:3171–3176. doi:10.1242/jcs.166074 CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2017

Authors and Affiliations

  • Naoki Minamino
    • 1
    • 2
  • Takehiko Kanazawa
    • 1
    • 2
  • Ryuichi Nishihama
    • 3
  • Katsuyuki T. Yamato
    • 4
  • Kimitsune Ishizaki
    • 5
  • Takayuki Kohchi
    • 3
  • Akihiko Nakano
    • 1
    • 6
  • Takashi Ueda
    • 2
    • 7
    • 8
  1. 1.Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
  2. 2.Division of Cellular DynamicsNational Institute for Basic BiologyOkazakiJapan
  3. 3.Graduate School of BiostudiesKyoto UniversityKyotoJapan
  4. 4.Faculty of Biology-Oriented Science and TechnologyKindai UniversityKinokawaJapan
  5. 5.Graduate School of ScienceKobe UniversityKobeJapan
  6. 6.Live Cell Super-Resolution Imaging Research TeamRIKEN Center for Advanced PhotonicsWakoJapan
  7. 7.Japan Science and Technology Agency (JST)PRESTOSaitamaJapan
  8. 8.Department of Basic BiologySOKENDAI (Graduate University for Advanced Studies)OkazakiJapan

Personalised recommendations