Journal of Plant Research

, Volume 130, Issue 3, pp 479–483 | Cite as

Exosomes versus microexosomes: Shared components but distinct functions

  • Kenji Miyado
  • Woojin Kang
  • Kenji Yamatoya
  • Maito Hanai
  • Akihiro Nakamura
  • Toshiyuki Mori
  • Mami Miyado
  • Natsuko Kawano
JPR Symposium Fusion in Fertilization: Interdisciplinary Collaboration among Plant and Animal Scientists

Abstract

In multicellular organisms, cellular components are constantly translocated within cells and are also transported exclusively between limited cells, regardless of their physical distance. Exosomes function as one of the key mediators of intercellular transportation. External vesicles were identified 50 years ago in plants and now reconsidered to be exosome-like vesicles. Meanwhile, a well-known exosomal component, tetraspanin CD9, regulates sperm–egg fusion in mammals. A number of Arabidopsis tetraspanins are also expressed in reproductive tissues at fertilization, and are localized at the plasma membrane of protoplasts. Moreover, CD9-containing structures (or ‘microexosomes’) are released from mouse eggs during their maturation and promote the sperm–egg fusion. This phenomenon implies that two types of shared-component intercellular carriers might be released from multiple types of plant and animal cells, which widely regulate biological phenomena. We herein highlight their discrete structures, formation processes, and functions.

Keywords

Exosome Microexosome Intercellular transportation Membrane fusion CD9 Tetraspanin 

References

  1. Bianchi E, Doe B, Goulding D, Wright GJ (2014) Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508:483–487CrossRefPubMedPubMedCentralGoogle Scholar
  2. Clergeot PH, Gourgues M, Cots J, Laurans F, Latorse MP, Pepin R, Tharreau D, Notteghem JL, Lebrun MH (2001) PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proc Natl Acad Sci USA 98:6963–6968CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cnops G, Neyt P, Raes J, Petrarulo M, Nelissen H, Malenica N, Luschnig C, Tietz O, Ditengou F, Palme K et al (2006) The TORNADO1 and TORNADO2 genes function in several patterning processes during early leaf development in Arabidopsis thaliana. Plant Cell 18:852–866CrossRefPubMedPubMedCentralGoogle Scholar
  4. Couzin J (2005) Cell biology: the ins and outs of exosomes. Science 308:1862–1863CrossRefPubMedGoogle Scholar
  5. Desrochers LM, Antonyak MA, Cerione RA (2016) Extracellular vesicles: satellites of information transfer in cancer and stem cell biology. Dev Cell 37:301–309CrossRefPubMedGoogle Scholar
  6. Ding Y, Wang J, Stierhof YD, Robinson DG, Jiang L (2012) Unconventional protein secretion. Trends Plant Sci 17:606–615CrossRefPubMedGoogle Scholar
  7. Hakomori Si SI (2002) The glycosynapse. Proc Natl Acad Sci USA 99:225–232CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hemler ME (2014) Tetraspanin proteins promote multiple cancer stages. Nat Rev Cancer 14:49–60CrossRefPubMedGoogle Scholar
  9. Inoue N, Ikawa M, Isotani A, Okabe M (2005) The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434:234–238CrossRefPubMedGoogle Scholar
  10. Izumi Y, Motoishi M, Furuse K, Furuse M (2016) A tetraspanin regulates septate junction formation in Drosophila midgut. J Cell Sci 129:1155–1164CrossRefPubMedGoogle Scholar
  11. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420PubMedGoogle Scholar
  12. Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y, Sakagami J, Tada N, Miyazaki S, Kudo A (2000) The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat Genet 24:279–282CrossRefPubMedGoogle Scholar
  13. Kawano N, Miyado K, Yoshii N, Kanai S, Saito H, Miyado M, Inagaki N, Odawara Y, Hamatani T, Umezawa A (2014) Absence of CD9 reduces endometrial VEGF secretion and impairs uterine repair after parturition. Sci Rep 4:4701CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thery C (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA 113:E968–E977CrossRefPubMedPubMedCentralGoogle Scholar
  15. Krause C, Richter S, Knoll C, Jurgens G (2013) Plant secretome from cellular process to biological activity. Biochim Biophys Acta 1834:2429–2441CrossRefPubMedGoogle Scholar
  16. Kulp A, Kuehn MJ (2010) Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 64:163–184CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lambou K, Tharreau D, Kohler A, Sirven C, Marguerettaz M, Barbisan C, Sexton AC, Kellner EM, Martin F, Howlett BJ et al (2008) Fungi have three tetraspanin families with distinct functions. BMC Genomics 9:63CrossRefPubMedPubMedCentralGoogle Scholar
  18. Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C (2000) Severely reduced female fertility in CD9-deficient mice. Science 287:319–321CrossRefPubMedGoogle Scholar
  19. Liu Q, Rojas-Canales DM, Divito SJ, Shufesky WJ, Stolz DB, Erdos G, Sullivan ML, Gibson GA, Watkins SC, Larregina AT et al (2016) Donor dendritic cell-derived exosomes promote allograft-targeting immune response. J Clin Invest 126:2805–2820CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lutz HU, Liu SC, Palek J (1977) Release of spectrin-free vesicles from human erythrocytes during ATP depletion. I. Characterization of spectrin-free vesicles. J Cell Biol 73:548–560CrossRefPubMedPubMedCentralGoogle Scholar
  21. Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A et al (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321–324CrossRefPubMedGoogle Scholar
  22. Miyado K, Yoshida K, Yamagata K, Sakakibara K, Okabe M, Wang X, Miyamoto K, Akutsu H, Kondo T, Takahashi Y et al (2008) The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc Natl Acad Sci USA 105:12921–12926CrossRefPubMedPubMedCentralGoogle Scholar
  23. Moribe H, Konakawa R, Koga D, Ushiki T, Nakamura K, Mekada E (2012) Tetraspanin is required for generation of reactive oxygen species by the dual oxidase system in Caenorhabditis elegans. PLoS Genet 8:e1002957CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ohnami N, Nakamura A, Miyado M, Sato M, Kawano N, Yoshida K, Harada Y, Takezawa Y, Kanai S, Ono C, et al (2012) CD81 and CD9 work independently as extracellular components upon fusion of sperm and oocyte. Biol Open 1:640–647CrossRefPubMedPubMedCentralGoogle Scholar
  25. Okabe M (2015) Mechanisms of fertilization elucidated by gene-manipulated animals. Asian J Androl 17:646–652CrossRefPubMedPubMedCentralGoogle Scholar
  26. Pan BT, Teng K, Wu C, Adam M, Johnstone RM (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101:942–948CrossRefPubMedGoogle Scholar
  27. Pitt JM, Kroemer G, Zitvogel L (2016) Extracellular vesicles: masters of intercellular communication and potential clinical interventions. J Clin Invest 126:1139–1143CrossRefPubMedPubMedCentralGoogle Scholar
  28. Regente M, Corti-Monzon G, Maldonado AM, Pinedo M, Jorrin J, de la Canal L (2009) Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome marker proteins. FEBS Lett 583:3363–3366CrossRefPubMedGoogle Scholar
  29. Regente M, Pinedo M, Elizalde M, de la Canal L (2012) Apoplastic exosome-like vesicles: a new way of protein secretion in plants? Plant Signal Behav 7:544–546CrossRefPubMedPubMedCentralGoogle Scholar
  30. Risco-Castillo V, Topcu S, Son O, Briquet S, Manzoni G, Silvie O (2014) CD81 is required for rhoptry discharge during host cell invasion by Plasmodium yoelii sporozoites. Cell Microbiol 16:1533–1548CrossRefPubMedGoogle Scholar
  31. Silvie O, Rubinstein E, Franetich JF, Prenant M, Belnoue E, Renia L, Hannoun L, Eling W, Levy S, Boucheix C et al (2003) Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nat Med 9:93–96CrossRefPubMedGoogle Scholar
  32. Tanigawa M, Miyamoto K, Kobayashi S, Sato M, Akutsu H, Okabe M, Mekada E, Sakakibara K, Miyado M, Umezawa A et al (2008) Possible involvement of CD81 in acrosome reaction of sperm in mice. Mol Reprod Dev 75:150–155CrossRefPubMedGoogle Scholar
  33. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659CrossRefPubMedGoogle Scholar
  34. Vanaja SK, Russo AJ, Behl B, Banerjee I, Yankova M, Deshmukh SD, Rathinam VA (2016) Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell 165:1106–1119CrossRefPubMedGoogle Scholar
  35. Veneault-Fourrey C, Parisot D, Gourgues M, Lauge R, Lebrun MH, Langin T (2005) The tetraspanin gene ClPLS1 is essential for appressorium-mediated penetration of the fungal pathogen Colletotrichum lindemuthianum. Fungal Genet Biol 42:306–318CrossRefPubMedGoogle Scholar
  36. Wang F, Muto A, Van de Velde J, Neyt P, Himanen K, Vandepoele K, Van Lijsebettens M (2015) Functional analysis of the Arabidopsis TETRASPANIN gene family in plant growth and development. Plant Physiol 169:2200–2214PubMedPubMedCentralGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2017

Authors and Affiliations

  • Kenji Miyado
    • 1
  • Woojin Kang
    • 1
    • 2
  • Kenji Yamatoya
    • 3
  • Maito Hanai
    • 4
  • Akihiro Nakamura
    • 1
    • 4
  • Toshiyuki Mori
    • 5
  • Mami Miyado
    • 6
  • Natsuko Kawano
    • 1
    • 4
  1. 1.Department of Reproductive BiologyNational Research Institute for Child Health and DevelopmentTokyoJapan
  2. 2.Department of Perinatal Medicine and Maternal CareNational Center for Child Health and DevelopmentTokyoJapan
  3. 3.Department of Applied Biological ScienceTokyo University of ScienceNodaJapan
  4. 4.Department of Life Sciences, School of AgricultureMeiji UniversityKawasakiJapan
  5. 5.Department of Tropical Medicine and ParasitologyJuntendo UniversityTokyoJapan
  6. 6.Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan

Personalised recommendations