Journal of Plant Research

, Volume 130, Issue 2, pp 397–405 | Cite as

Plasma membrane-anchored chloroplasts are necessary for the gravisensing system of Ceratopteris richardii prothalli

  • Hiroyuki Kamachi
  • Daisuke Tamaoki
  • Ichirou Karahara
Regular Paper


The prothalli of the fern Ceratopteris richardii exhibit negative gravitropism when grown in darkness. However, no sedimentable organelles or substances have been detected in the prothallial cells, suggesting that a non-sedimentable gravisensor exists. We investigated whether chloroplasts are involved in the gravisensing system of C. richardii prothalli. We used a clumped-chloroplast mutant, clumped chloroplast 1 (cp1), in which the chloroplasts are detached from the plasma membrane and clustered around the nucleus likely because of a partial deletion in the KINESIN-LIKE PROTEIN FOR ACTIN-BASED CHLOROPLAST MOVEMENT 1 gene. The cp1 mutation resulted in prothalli that had a significantly diminished gravitropic response, while the phototropic response occurred normally. These results suggest that plasma membrane-anchored chloroplasts in prothallial cells function as one of the gravisensors in C. richardii prothalli.


Ceratopteris richardii Fern gametophyte Gravitropism Gravity perception 



This work was supported by JSPS KAKENHI Grant Number JP15K11914.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10265_2016_889_MOESM1_ESM.pdf (227 kb)
Supplementary material 1 (PDF 227 KB)


  1. Bai H, Wolverton C (2011) Gravitropism in lateral roots of Arabidopsis pgm-1 mutants is indistinguishable from that of wild-type. Plant Signal Behav 6:1423–1424. doi: 10.4161/psb.6.10.16963 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Banaś AK, Aggarwal C, Labuz J, Sztatelman O, Gabryś H (2012) Blue light signalling in chloroplast movements. J Exp Bot 63:1559–1574. doi: 10.1093/jxb/err429 CrossRefPubMedGoogle Scholar
  3. Banbury GH (1962) Geotropism of lower plants. In: Aletsee et al. (eds) Physiology of movements/Physiologie der bewwgungen. Springer, Heidelberg, p 344–377. doi: 10.1007/978-3-642-94852-7_8 CrossRefGoogle Scholar
  4. Banks JA (1994) Sex-determining genes in the homosporous fern Ceratopteris. Development 120:1949–1958PubMedGoogle Scholar
  5. Barlow PW (1995) Gravity perception in plants: a multiplicity of systems derived by evolution? Plant Cell Environ 18:951–962CrossRefPubMedGoogle Scholar
  6. Caspar T, Pickard BG (1989) Gravitropism in a starchless mutant of Arabidopsis: implications for the starch-statolith theory of gravity sensing. Planta 177:185–197. doi: 10.1007/BF00392807 CrossRefGoogle Scholar
  7. Chen R, Rosen E, Mass PH (1999) Gravitropism in higher plants. Plant Physiol 120:343–350. doi: 10.1104/pp.120.2.343 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Edwards ES, Roux SJ (1994) Limited period of graviresponsiveness in germinating spores of Ceratopteris richardii. Planta 195:150–152CrossRefPubMedGoogle Scholar
  9. Edwards ES, Roux SJ (1998) Influence of gravity and light on the developmental polarity of Ceratopteris richardii fern spores. Planta 205:553–560CrossRefPubMedGoogle Scholar
  10. Guyomarc’h S, Leran S, Auzon-Cape M, Perrine-Walker F, Lucas M, Laplaze L (2012) Early development and gravitropic response of lateral roots in Arabidopsis thaliana. Philos Trans R Soc Lond B Bio Sci 367:1509–1516. doi: 10.1098/rstb.2011.0231 CrossRefGoogle Scholar
  11. Haberlandt G (1900) Ueber die perception des geotropischen reizes. Ber Deutsch Bot Ges 18:261–272Google Scholar
  12. Hashiguchi Y, Tasaka M, Morita MT (2013) Mechanism of higher plant gravity sensing. Am J Bot 100:91–100. doi: 10.3732/ajb.1200315 CrossRefPubMedGoogle Scholar
  13. Kagawa T, Wada M (1993) Light-dependent nuclear positioning in prohtallial cells of Adiantum capillus-veneris. Protoplasma 177:82–85CrossRefGoogle Scholar
  14. Kamachi H, Noguchi M (2012) Negative gravitropism in dark-grown gametophytes of the fern Ceratopteris richardii. Am Fern J 102:147–153. doi: 10.1640/0002-8444-102.2.147 CrossRefGoogle Scholar
  15. Kamachi H, Matsunaga E, Noguchi M, Inoue H (2004) Novel mutant phenotypes of a dark-germinating mutant dkg1 in the fern Ceratopteris richardii. J Plant Res 117:163–170. doi: 10.1007/s10265-004-0143-9 CrossRefPubMedGoogle Scholar
  16. Kamachi H, Iwasawa O, Hickok LG, Nakayama M, Noguchi M, Inoue H (2007) The effects of light on sex determination in gametophytes of the fern Ceratopteris richardii. J Plant Res 120:629–634. doi: 10.1007/s10265-007-0106-z CrossRefPubMedGoogle Scholar
  17. Kiss JZ, Wright JB, Caspar T (1996) Gravitropism in roots of intermediate-starch mutants of Arabidopsis. Physiol Plant 97:237–244. doi: 10.1034/j.1399-3054.1996.970205.x CrossRefPubMedGoogle Scholar
  18. Kiss JZ, Miller KM, Ogden LA, Roth KK (2002) Phototropism and gravitropism in lateral roots of Arabidopsis. Plant Cell Physiol 43:35–43. doi: 10.1093/pcp/pcf017 CrossRefPubMedGoogle Scholar
  19. Kong SG, Wada M (2016) Molecular basis of chloroplast photorelocation movement. J Plant Res 129:159–166. doi: 10.1007/s10265-016-0788-1 CrossRefPubMedGoogle Scholar
  20. Morita MT (2010) Directional gravity sensing in gravitropism. Annu Rev Plant Biol 61:705–720. doi: 10.1146/annurev.arplant.043008.092042 CrossRefPubMedGoogle Scholar
  21. Morita MT, Nakamura M (2012) Dynamic behavior of plastids related to environmental response. Curr Opin Plant Biol 15:722–728. doi: 10.1016/j.pbi.2012.08.003 CrossRefPubMedGoogle Scholar
  22. Muraki N, Nomata J, Ebata K, Mizoguchi T, Shiba T, Tamiaki H, Kurisu G, Fujita Y (2010) X-ray crystal structure of the light-independent protochlorophyllide reductase. Nature 465:110–114. doi: 10.1038/nature08950 CrossRefPubMedGoogle Scholar
  23. Murata T, Sugai M (2000) Photoregulation of asymmetric cell division followed by rhizoid development in the fern Ceratopteris prothalli. Plant Cell Physiol 41:1313–1320. doi: 10.1093/pcp/pcd063 CrossRefPubMedGoogle Scholar
  24. Němec B (1900) Über die art der wahrnehmung des schwerkraftreizes bei den pflanzen. Ber Deutsch Bot Ges 18:241–245Google Scholar
  25. Oikawa K, Kasahara M, Kiyosue T, Kagawa T, Suetsugu N, Takahashi F, Kanegae T, Niwa Y, Kadota A, Wada M (2003) Chloroplast unusual positioning1 is essential for proper chloroplast positioning. Plant Cell 15:2805–2815. doi: 10.1105/tpc.016428 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Oikawa K, Yamasato A, Kong SG, Kasahara M, Nakai M, Takahashi F, Ogura Y, Kagawa T, Wada M (2008) Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement. Plant Physiology 148:829–842. doi: 10.1104/pp.108.123075 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Raghavan V (1989) Developmental biology of fern gametophytes. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. Ridge RW, Sack FD (1992) Cortical and cap sedimentation in gravitropic Equisetum roots. Am J Bot 79:328–334CrossRefPubMedGoogle Scholar
  29. Sack FD (1997) Plastids and gravitropic sensing. Planta 203:S63–S68CrossRefPubMedGoogle Scholar
  30. Salmi ML, ul Haque A, Bushart TJ, Stout SC, Roux SJ, Porterfield DM (2011) Changes in gravity rapidly alter the magnitude and direction of a cellular calcium current. Planta 233:911–920. doi: 10.1007/s00425-010-1343-2 CrossRefPubMedGoogle Scholar
  31. Scott RJ, Hickok LG (1991) Inheritance and characterization of a dark-germinating, light-inhibited mutant in the fern Ceratopteris richardii. Can J Bot 69:2616–2619. doi: 10.1139/b91-326 CrossRefGoogle Scholar
  32. Suetsugu N, Yamada N, Kagawa T, Yonekura H, Uyeda TQP, Kadota A, Wada M (2010) Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:8860–8865. doi: 10.1073/pnas.0912773107 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Suetsugu N, Sato Y, Tsuboi H, Kasahara M, Imaizumi T, Kagawa T, Hiwatashi Y, Hasebe M, Wada M (2012) The KAC family of kinesin-like proteins is essential for the association of chloroplasts with the plasma membrane in land plants. Plant Cell Physiol 53:1854–1865. doi: 10.1093/pcp/pcs133 CrossRefPubMedGoogle Scholar
  34. Toyota M, Ikeda N, Sawai-Toyota S, Kato T, Gilroy S, Tasaka M, Morita MT (2013) Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope. Plant J 76:648–660. doi: 10.1111/tpj.12324 CrossRefPubMedGoogle Scholar
  35. Tsuboi H, Wada M (2012) Chloroplasts move towards the nearest anticlinal walls under dark condition. J Plant Res 125:301–310. doi: 10.1007/s10265-011-0433-y CrossRefPubMedGoogle Scholar
  36. Vaughn KC, Hickok LG, Warne TR, Farrow AC (1990) Structural analysis and inheritance of a clumped-chloroplast mutant in the fern Ceratopteris. J Hered 81:146–151Google Scholar
  37. Weise SE, Kuznetsov OA, Hasenstein KH, Kiss JZ (2000) Curvature in Arabidopsis inflorescence stems is limited to the region of amyloplast displacement. Plant Cell Physiol 41:702–709. doi: 10.1093/pcp/41.6.702 CrossRefPubMedGoogle Scholar
  38. Wilkins MB (1966) Geotropism. Annu Rev Plant Physiol 17:379–408CrossRefGoogle Scholar
  39. Wolverton C, Ishikawa H, Evans ML (2002a) The kinetics of root gravitropism: dual motors and sensors. J Plant Growth Regul 21:102–112. doi: 10.1007/s003440010053 CrossRefPubMedGoogle Scholar
  40. Wolverton C, Mullen JL, Ishikawa H, Evans ML (2002b) Root gravitropism in response to a signal originating outside of the cap. Planta 215:153–157. doi: 10.1007/s00425-001-0726-9 CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Hiroyuki Kamachi
    • 1
  • Daisuke Tamaoki
    • 1
    • 2
  • Ichirou Karahara
    • 1
  1. 1.Graduate School of Science and EngineeringUniversity of ToyamaToyamaJapan
  2. 2.Division of Functional Genomics, Advanced Science Research CenterKanazawa UniversityKanazawaJapan

Personalised recommendations