Skip to main content

Expression of a putative dioxygenase gene adjacent to an insertion mutation is involved in the short internodes of columnar apples (Malus × domestica)

Abstract

Determining the molecular mechanism of fruit tree architecture is important for tree management and fruit production. An apple mutant ‘McIntosh Wijcik’, which was discovered as a bud mutation from ‘McIntosh’, exhibits a columnar growth phenotype that is controlled by a single dominant gene, Co. In this study, the mutation and the Co gene were analyzed. Fine mapping narrowed the Co region to a 101 kb region. Sequence analysis of the Co region and the original wild-type co region identified an insertion mutation of an 8202 bp long terminal repeat (LTR) retroposon in the Co region. Segregation analysis using a DNA marker based on the insertion polymorphism showed that the LTR retroposon was closely associated with the columnar growth phenotype. RNA-seq and RT-PCR analysis identified a promising Co candidate gene (91071-gene) within the Co region that is specifically expressed in ‘McIntosh Wijcik’ but not in ‘McIntosh’. The 91071-gene was located approximately 16 kb downstream of the insertion mutation and is predicted to encode a 2-oxoglutarate-dependent dioxygenase involved in an unknown reaction. Overexpression of the 91071-gene in transgenic tobaccos and apples resulted in phenotypes with short internodes, like columnar apples. These data suggested that the 8202 bp retroposon insertion in ‘McIntosh Wijcik’ is associated with the short internodes of the columnar growth phenotype via upregulated expression of the adjacent 91071-gene. Furthermore, the DNA marker based on the insertion polymorphism could be useful for the marker-assisted selection of columnar apples.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Baba T, Katagiri S, Tanoue H, Tanaka R, Chiden Y, Saji S, Hamada M, Nakashima M, Okamoto M, Hayashi M, Yoshiki S, Karasawa W, Honda M, Ichikawa Y, Arita K, Ikeno M, Ohta T, Umehara Y, Matsumoto T, de Jong PJ, Sasaki T (2000) Construction and characterization of rice genomic libraries: PAC library of Japonica variety, Nipponbare and BAC Library of Indica variety, Kasalath. Bull Natl Inst Agrobiol Resour 14:41–52

    CAS  Google Scholar 

  • Bai T, Zhu Y, Fernandez-Fernandez F, Keulemans J, Brown S, Xu K (2012) Fine genetic mapping of the Co locus controlling columnar growth habit in apple. Mol Genet Genomics 287:437–450. doi:10.1007/s00438-012-0689-5

    CAS  Article  PubMed  Google Scholar 

  • Baldi P, Wolters PJ, Komjanc M, Viola R, Velasco R, Salvi S (2013) Genetic and physical characterisation of the locus controlling columnar habit in apple (Malus × domestica Borkh.). Mol Breeding 31:429–440. doi:10.1007/s11032-012-9800-1

    CAS  Article  Google Scholar 

  • Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24:1242–1255. doi:10.1105/tpc.111.095232

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Conner PJ, Brown SK, Weeden NF (1997) Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars. J Am Soc Hortic Sci 122:350–359

    CAS  Google Scholar 

  • Costes E, Lauri PÉ, Regnard JL (2006) Analyzing fruit tree architecture: implications for tree management and fruit production. In: Janick J (ed) Horticultural reviews, volume 32. Wiley, Oxford. doi:10.1002/9780470767986.ch1

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    CAS  Article  PubMed  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    CAS  Article  PubMed  Google Scholar 

  • Grandbastien M-A (2015) LTR retrotransposons, handy hitchhikers of plant regulation and stress response. BBA-Gene Regul Mech 1849(4):403–416. doi:10.1016/j.bbagrm.2014.07.017

    CAS  Google Scholar 

  • Hemmat M, Weeden NF, Conner PJ, Brown SK (1997) A DNA marker for columnar growth habit in apple contains a simple sequence repeat. J Am Soc Hortic Sci 122:347–349

    CAS  Google Scholar 

  • Hollender CA, Dardick C (2015) Molecular basis of angiosperm tree architecture. New Phytol 206:541–556. doi:10.1111/nph.13204

    Article  PubMed  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general-method for transferring genes into plants. Science 227:1229–1231

    CAS  Article  Google Scholar 

  • Kawai Y, Ono E, Mizutani M (2014) Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant J 78:328–343. doi:10.1111/tpj.12479

    CAS  Article  PubMed  Google Scholar 

  • Kelsey DF, Brown SK (1992) ‘McIntosh Wijcik’: a columnar mutation of ‘McIntosh’ apple proving useful in physiology and breeding research. Fruit Varieties J 46:83–87

    Google Scholar 

  • Krost C, Petersen R, Schmidt ER (2012) The transcriptomes of columnar and standard type apple trees (Malus x domestica)—a comparative study. Gene 498:223–230. doi:10.1016/j.gene.2012.01.078

    CAS  Article  PubMed  Google Scholar 

  • Krost C, Petersen R, Lokan S, Brauksiepe B, Braun P, Schmidt ER (2013) Evaluation of the hormonal state of columnar apple trees (Malus x domestica) based on high throughput gene expression studies. Plant Mol Biol 81:211–220. doi:10.1007/s11103-012-9992-0

    CAS  Article  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol. doi:10.1093/molbev/msw054

    Google Scholar 

  • Lapins KO (1976) Inheritance of compact growth type in apple. J Am Soc Hortic Sci 101:133–135

    Google Scholar 

  • Lisch D (2013) How important are transposons for plant evolution? Nat Rev Genet 14:49–61. doi:10.1038/nrg3374

    CAS  Article  PubMed  Google Scholar 

  • Matsuda J, Okabe S, Hashimoto T, Yamada Y (1991) Molecular cloning of Hyoscyamine 6-beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger. J Biol Chem 266:9460–9464

    CAS  PubMed  Google Scholar 

  • Mimida N, Oshino H, Li J, Zhang C, Takagishi K, Moriya-Tanaka Y, Iwanami H, Honda C, Suzuki A, Komori S, Wada M (2011) Effects of the plant growth regulators on expression of MdTFL1 promoter fused beta-glucuronidase (GUS) reporter gene in apple (Malus spp.) tissues in vitro. Plant Biotechnology 28:503–508. doi:10.5511/plantbiotechnology.11.0909a

    CAS  Article  Google Scholar 

  • Moriya S, Iwanami H, Kotoda N, Takahashi S, Yamamoto T, Abe K (2009) Development of a marker-assisted selection system for columnar growth habit in apple breeding. J Jpn Soc Hortic Sci 78:279–287

    CAS  Article  Google Scholar 

  • Moriya S, Okada K, Haji T, Yamamoto T, Abe K (2012) Fine mapping of Co, a gene controlling columnar growth habit located on apple (Malus x domestica Borkh.) linkage group 10. Plant Breed 131:641–647. doi:10.1111/j.1439-0523.2012.01985.x

    CAS  Article  Google Scholar 

  • Nakanishi H, Yamaguchi H, Sasakuma T, Nishizawa NK, Mori S (2000) Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Mol Biol 44:199–207. doi:10.1023/a:1006491521586

    CAS  Article  PubMed  Google Scholar 

  • Otto D, Petersen R, Brauksiepe B, Braun P, Schmidt ER (2014) The columnar mutation (“Co gene”) of apple (Malus x domestica) is associated with an integration of a Gypsy-like retrotransposon. Mol Breed 33:863–880. doi:10.1007/s11032-013-0001-3

    CAS  Article  Google Scholar 

  • Petersen R, Djozgic H, Rieger B, Rapp S, Schmidt ER (2015) Columnar apple primary roots share some features of the columnar-specific gene expression profile of aerial plant parts as evidenced by RNA-Seq analysis. BMC Plant Biol. doi:10.1186/s12870-014-0356-6

    PubMed  PubMed Central  Google Scholar 

  • Quiapim AC, Brito MS, Bernardes LAS, daSilva I, Malavazi I, DePaoli HC, Molfetta-Machado JB, Giuliatti S, Goldman GH, Goldman MHS (2009) Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species. Plant Physiol 149:1211–1230. doi:10.1104/pp.108.131573

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu JZ, Niimura Y, Cheng ZK, Nagamura Y, Antonio BA, Kanamori H, Hosokawa S, Masukawa M, Arikawa K, Chiden Y, Hayashi M, Okamoto M, Ando T, Aoki H, Arita K, Hamada M, Harada C, Hijishita S, Honda M, Ichikawa Y, Idonuma A, Iijima M, Ikeno M, Ito S, Ito T, Ito Y, Iwabuchi A, Kamiya K, Karasawa W, Katagiri S, Kikuta A, Kobayashi N, Kono I, Machita K, Maehara T, Mizuno H, Mizubayashi T, Mukai Y, Nagasaki H, Nakashima M, Nakama Y, Nakamichi Y, Nakamura M, Namiki N, Negishi M, Ohta I, Ono N, Saji S, Sakai K, Shibata M, Shimokawa T, Shomura A, Song JY, Takazaki Y, Terasawa K, Tsuji K, Waki K, Yamagata H, Yamane H, Yoshiki S, Yoshihara R, Yukawa K, Zhong HS, Iwama H, Endo T, Ito H, Hahn JH, Kim HI, Eun MY, Yano M, Jiang JM, Gojohori T (2002) The genome sequence and structure of rice chromosome 1. Nature 420:312–316. doi:10.1038/nature01184

    CAS  Article  PubMed  Google Scholar 

  • Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:U1160–U1164. doi:10.1038/ng.942

    Article  Google Scholar 

  • Takos AM, Ubi BE, Robinson SP, Walker AR (2006) Condensed tannin biosynthesis genes are regulated separately from other flavonoid biosynthesis genes in apple fruit skin. Plant Sci 170:487–499. doi:10.1016/j.plantsci.2005.10.001

    CAS  Article  Google Scholar 

  • Tanaka N, Ureshino A, Shigeta N, Mimida N, Komori S, Takahashi S, Tanaka-Moriya Y, Wada M (2014) Overexpression of Arabidopsis FT gene in apple leads to perpetual flowering. Plant Biotechnol 31:11–20. doi:10.5511/plantbiotechnology.13.0912a

    Article  Google Scholar 

  • Tian YK, Wang CH, Zhang JS, James C, Dai HY (2005) Mapping Co, a gene controlling the columnar phenotype of apple, with molecular markers. Euphytica 145:181–188. doi:10.1007/s10681-005-1163-9

    CAS  Article  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagne D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouze P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel C-E, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42:833. doi:10.1038/ng.654

    CAS  Article  PubMed  Google Scholar 

  • Wada M, Cao QF, Kotoda N, Soejima J, Masuda T (2002) Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Mol Biol 49:567–577. doi:10.1023/a:1015544207121

    CAS  Article  PubMed  Google Scholar 

  • Wada M, Ureshino A, Tanaka N, Komori S, Takahashi S, Kudo K, Bessho H (2009) Anatomical analysis by two approaches ensure the promoter activities of apple AFL genes. J Jpn Soc Hortic Sci 78:32–39

    CAS  Article  Google Scholar 

  • Watanabe M, Suzuki A, Komori S, Bessho H (2004) Comparison of endogenous IAA and cytokinins in shoots of columnar and normal type apple trees. J Jpn Soc Hortic Sci 73:19–24

    CAS  Article  Google Scholar 

  • Watanabe M, Suzuki A, Komori S, Bessho H (2006) Effects of heading-back pruning on shoot growth and IAA and cytokinin concentrations at bud burst of columnar-type apple trees. J Jpn Soc Hortic Sci 75:224–230. doi:10.2503/jjshs.75.224

    CAS  Article  Google Scholar 

  • Wolters PJ (2015) Evidence for regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase (vol 200, pg 993, 2013). New Phytol 207:928–928. doi:10.1111/nph.13412

  • Wolters PJ, Schouten HJ, Velasco R, Si-Ammour A, Baldi P (2013) Evidence for regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase. New Phytol 200:993–999. doi:10.1111/nph.12580

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kenji Nashima for helpful discussions on the RNA-seq analysis, and Dr. Masaharu Mizutani for helpful comments on the 2OGDs. This work was supported by Japan Society for the Promotion of Science KAKENHI (Grant Number 24780033) and a Grant from the Ministry of Agriculture, Forestry and Fisheries of Japan [Genomics-based Technology for Agricultural Improvement (Grant Number HOR-2002)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuma Okada.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Okada, K., Wada, M., Moriya, S. et al. Expression of a putative dioxygenase gene adjacent to an insertion mutation is involved in the short internodes of columnar apples (Malus × domestica). J Plant Res 129, 1109–1126 (2016). https://doi.org/10.1007/s10265-016-0863-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-016-0863-7

Keywords

  • DNA marker
  • Mutant
  • Retroposon
  • RNA-seq
  • Tree architecture
  • 2-oxoglutarate-dependent dioxygenase