Skip to main content

Modeling the impact of climate change on wild Piper nigrum (Black Pepper) in Western Ghats, India using ecological niche models

Abstract

The center of diversity of Piper nigrum L. (Black Pepper), one of the highly valued spice crops is reported to be from India. Black pepper is naturally distributed in India in the Western Ghats biodiversity hotspot and is the only known existing source of its wild germplasm in the world. We used ecological niche models to predict the potential distribution of wild P. nigrum in the present and two future climate change scenarios viz (A1B) and (A2A) for the year 2080. Three topographic and nine uncorrelated bioclim variables were used to develop the niche models. The environmental variables influencing the distribution of wild P. nigrum across different climate change scenarios were identified. We also assessed the direction and magnitude of the niche centroid shift and the change in niche breadth to estimate the impact of projected climate change on the distribution of P. nigrum. The study shows a niche centroid shift in the future climate scenarios. Both the projected future climate scenarios predicted a reduction in the habitat of P. nigrum in Southern Western Ghats, which harbors many wild accessions of P. nigrum. Our results highlight the impact of future climate change on P. nigrum and provide useful information for designing sound germplasm conservation strategies for P. nigrum.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP (2015) spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38:541–545

    Article  Google Scholar 

  • Baldwin RA (2009) Use of maximum entropy modeling in wildlife research. Entropy 11:854–866

    Article  Google Scholar 

  • Beltramino AA, Vogler RE, Gregoric DEG, Rumi A (2015) Impact of climate change on the distribution of a giant land snail from South America: predicting future trends for setting conservation priorities on native malacofauna. Clim Chang. doi:10.1007/s10584-015-1405-3

    Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Gaston A, Gracia-Vinas JI (2013) Evaluating the predictive performance of stacked species distribution models applied to plant species selection in ecological restoration. Ecol Modell 263:103–108

    Article  Google Scholar 

  • Geviz-Gelviz SM, Pavon PM, Illoldi-Rangel P, Ballesteros-Barrera C (2015) Ecological niche modeling under climate change to select shrubs for ecological restoration in Central Mexico. Ecol Eng 74:302–309

    Article  Google Scholar 

  • Gordo SM, Pinheiro DG, Moreira EC, Rodrigues SM, Poltronieri MC, de Lemos OF, da Silva IT, Ramos RT, Silva A, Schneider H, Silva WA (2012) High- throughput sequencing of black pepper root transcriptome. BMC plant biol 12:1

    Article  Google Scholar 

  • Harris JA, Hobbs RJ, Higgs E, Aronson J (2006) Ecological restoration and global climate change. Rest Ecol 14:170–176

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hoisington D, Khairallah M, Reeves T, Ribaut JM, Skovmand B, Taba S, Warburton M (1999) Plant genetic resources: what can they contribute toward increased crop productivity? PNAS 96:5937–5943

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • http://www.fcc.gov/encyclopedia/distance-and-azimuths-between-two-sets-coordinates. Accessed May 5 2016

  • Intergovernmental Panel on Climate Change (IPCC) (2001) Climate change 2001: the scientific basis. contribution of working group 1 to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jaramillo MA, Manos PS (2001) Phylogeny and patterns of floral diversity in the genus Piper (Piperaceae). Am J Bot 88:706–716

    CAS  Article  PubMed  Google Scholar 

  • Jarvis A, Lane A, Hijmans RJ (2008) The effect of climate change on crop wild relatives. Agric Ecosyst Environ 126:13–23

    Article  Google Scholar 

  • Krishna Kumar K, Patwardhan SK, Kulkarni A, Kamala K, Rao KK, Jones R (2011) Simulated projections for summer monsoon climate over India by a high-resolution regional climate model (PRECIS). Curr Sci 101:312–326

    Google Scholar 

  • Lal M, Nozawa T, Emori S, Haraswa H, Tkahashi K, Kimoto M et al (2001) Future climate change: implications for Indian summer monsoon and its variability. Curr Sci 81:1196–1207

    Google Scholar 

  • Levins R (1968) Evolution in changing environments. In: Monographs in population biology, vol 2. Princeton University Press, Princeton, New Jersey, USA

  • Mathew PJ, Jose JC, Nair G M, Mathew P M, Kumar V (2003) Assessment and conservation of intraspecific variability in Piper nigrum (‘Black Pepper’) occurring in the Western Ghats of Indian Peninsula. In: III WOCMAP congress on medicinal and aromatic plants-volume 2: conservation, cultivation and sustainable use of medicinal and 676, pp 119–126

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    CAS  Article  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonsea GA, Kent J (2000) Biodiveristy hotpsots for conservation priorities. Nature 403:853–858

    CAS  Article  PubMed  Google Scholar 

  • Nag C, Karanth KP, Gururaja KV (2014) Delineating ecological boundaries of hanuman langur species complex in peninsular india using MaxEnt modeling approach. PLoS ONE 9(2):e87804

    Article  PubMed  Google Scholar 

  • Naimi B (2014) Uncertainty analysis for species distribution models. R package, ver. 3.5-0

  • Nayar NM (2011) Agrobiodiversity in a biodiversity hotspot: Kerala State, India. Its origin and status. Genet Resour Crop Evol 58:55–82

    Article  Google Scholar 

  • Nazeem PA, Keshavachandran R, Babu TD, Achuthan CR, Girija D, Peter KV (2007) Assessment of genetic variability in Black Pepper (Piper nigrum L.) varieties through RAPD and AFLP analyses. In: Keshavachandran R, Nazeem PA, Girija D, John PS, Peter KV (eds) Recent trends in horticultural biotechnology. New India Publishing Agency, New Delhi, pp 485–490

    Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    CAS  Article  PubMed  Google Scholar 

  • Peterson AT, Pape M, Eaton M (2007) Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30:550–560

    Article  Google Scholar 

  • Peterson AT, Papes M, Kluza DA (2009) Predicitng the potential invasive distributions of four alien plant species in North America. Weed Sci 51:863–868

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259

    Article  Google Scholar 

  • Pradeepkumar T, Karihaloo JL, Archak S (2001) Molecular characterization of Piper nigrum L. cultivars using RAPD markers. Curr Sci 81:3

    Google Scholar 

  • Priti H, Aravind NA, Uma Shaanker R, Ravikanth G (2016) Modeling impacts of future climate on the distribution of Myristicaceae species in the Western Ghats, India. Ecol Eng 89:14–23

    Article  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  • Ranjitkar S, Xu J, Shrestha KK, Kindt R (2014) Ensemble forecast of climate suitability for the Trans-Himalayan Nyctaginaceae species. Ecol Modell 282:18–24

    Article  Google Scholar 

  • Ravindran PN (2000) Black Pepper- Piper nigrum. CRC Press

  • Ravindran PN, Balakrishnan R, Nirmalbabu K (1992) Numerical taxonomy of South Indian Piper L. (Piperaceae) cluster analysis. Rheedea 2:55–61

    Google Scholar 

  • Rupa Kumar K, Sahai AK, Krishna Kumar K, Patwardhan SK, Mishra PK, Revadekar JV, Pant GB (2006) High-resolution climate change scenarios for India for the twenty first century. Curr Sci 90:334–335

    Google Scholar 

  • Russel J, van-Zonneveld M, Dawson IK, Booth A, Waugh R, Steffenson B (2014) Genetic diversity and ecological niche modeling of wild barley: refugia, large-scale post LGM range expansion and limited mid future climate threats? PLoS One 9:e86021. doi:10.1371/journal.pone.0086021

    Article  Google Scholar 

  • Sarma RR, Munsi M, Aravind NA (2015) Effect of climate change on invasion risk of Giant African Snail (Achatina fulica: Férussac, 1821: Achatinidae) in India. PLoS One 10:e0143724. doi:10.1371/journal.pone.0143724

    Article  PubMed  Google Scholar 

  • Schoener TW (1968) The anolis lizards of bimini: resource partitioning in a complex fauna. Ecology 49:704–726

    Article  Google Scholar 

  • Sen S, Skaria R, Muneer PMA (2010) Genetic diversity analysis in Piper species (Piperaceae) using RAPD markers. Mol Biotechnol 46:72–79

    CAS  Article  PubMed  Google Scholar 

  • Shivaprakash KN, Ravikanth G, Barve N, Ghazoul J, Ganeshaiah KN, Uma Shaanker R (2013) Do ecological niche model predictions reflect the adaptive landscape of species?: a test using Myristica malabarica Lam., an endemic tree in the Western Ghats, India. PLoS One 8:e82066

    Article  Google Scholar 

  • Shukla PR et al (2003) Climate Change in India: vulnerability assessment and adaptation. Hyderabad University Press

  • Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2014) Climate change 2013: the physical science basis

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Willimas SE (2004) Extinction risk from climate change. Nature 427:145–148

    CAS  Article  PubMed  Google Scholar 

  • Thuiller W, Albert C, Araujo MB, Berry PM, Cabeza M, Guisan A, Zimmermann NE (2008) Predicitng global change impacts on plant species distributions: future challenges. Perspect. Plant Ecol Evol Syst 9:137–152

    Article  Google Scholar 

  • Visonti P, Pressey RL, Giorgini R et al (2011) Future hotspots of terrestrial mammal loss. Phil Trans R Soc B 366:2693–2702

    Article  Google Scholar 

  • Wanke S, Jaramillo MA, Borsch T, Samain M-S, Quandt D, Neinhuis C (2007) Evolution of the piperales - matK and trnK intron sequence data reveal lineage specific resolution contrast. Mol Ph Evol 42:477–497

    CAS  Article  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2010) ENM tools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611

    Article  Google Scholar 

  • Warren R, VanDerWal J, Price J, Welbergen JA, Atkinson I, Ramirez-Villegas J et al (2013) Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat Clim Change 3:678–682

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Forest Departments of Karnataka and Kerala for permission to undertake the fieldwork in the Western Ghats. We thank, Thomson Davis and R. Ganesan for helping in collecting accurate field data and herbarium data; David Moo-Llanes, Janine M. Ramsey, Aniruddha, Sunil Kumar and Gururaja K.V. for useful discussions. The field work was supported by a grant from IAPT (International Association for Plant Taxonomy) Bratislava to SS. SS received fellowship support from Tata Social Welfare Trust and Royal Norwegian Embassy. SR received support from DST India (YSS/2015/000234). Authors are thankful to the anonymous reviewers to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sandeep Sen or N. A. Aravind.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sen, S., Gode, A., Ramanujam, S. et al. Modeling the impact of climate change on wild Piper nigrum (Black Pepper) in Western Ghats, India using ecological niche models. J Plant Res 129, 1033–1040 (2016). https://doi.org/10.1007/s10265-016-0859-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-016-0859-3

Keywords

  • Piper nigrum
  • MaxEnt
  • Niche centroid
  • Future climate
  • Centres of diversity