Skip to main content

Who helps whom? Pollination strategy of Iris tuberosa and its relationship with a sexually deceptive orchid

Abstract

Reproductive success of plants may be affected by interactions with co-flowering species either negatively, through competition for pollinators, or positively, by means of a magnet species effect and floral mimicry. In this study, potential interactions between Iris tuberosa, a rewarding species, and Ophrys fusca, a sexually deceptive orchid, were explored in four populations in southern Italy. In each population plots showing different ratios of the examined species were arranged in the field, and in each plot the number of pollinators and fruit set were assessed. In addition, flower size and floral hydrocarbons produced by the two species were analysed. Morphological and scent data pointed out that flower size and aliphatic compounds did not differ significantly between the two species. Interestingly, both species shared tricosane and 11-nonacosene, electrophysiologically active compounds in the shared dominant pollinator Adrena. We have found that fruit production and number of pollinators in I. tuberosa varied significantly among plots, while percentage of capsules and number of pollinators of O. fusca captured showed no significant differences across plots. These results suggested, that the presence of O. fusca contributes differentially to pollinator attraction, and thus, to total reproductive success of I. tuberosa, according to a different ratio of aggregation. These findings suggest that I. tuberosa profits from the greater abundance of insects attracted by the presence of orchid specimens, and that a sexually deceptive orchid may be a magnet species in pollination strategy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Arcangeli G (1895) Sull’ Hermodactylus tuberosus. Boll Soc Bot Ital 6:182–184

    Google Scholar 

  • Ayasse M, Schiestl FP, Paulus HF, Ibarra F, Francke W (2003) Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals. Proc R Soc B 270:517–522

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Bellusci F, Pellegrino G, Palermo AM, Musacchio A (2010) Crossing barriers between the unrewarding Mediterranean orchids Serapias vomeracea and S. cordigera. Plant Species Biol 25:68–76

    Article  Google Scholar 

  • Bohman B, Phillips RD, Menz MHM, Berntsson BW, Flematti GR, Barrow RA, Dixon KW, Peakall R (2014) Discovery of pyrazines as pollinator sex pheromones and orchid semiochemicals: implications for the evolution of sexual deception. New Phytol 203:939–952

    CAS  Article  PubMed  Google Scholar 

  • Cortis P, Vereecken NJ, Schiestl FP, Barone Lumanga MR, Scrugli A, Cozzolino S (2009) Pollinator convergence and the nature of species’ boundaries in sympatric Sardinian Ophrys (Orchidaceae). Ann Bot 104:497–506

    CAS  Article  PubMed  Google Scholar 

  • Dafni A (1984) Deception, mimicry and parasitism in pollination. Ann Rev Ecol Syst 15:159–278

    Article  Google Scholar 

  • Dafni A, Ivri Y (1981) Floral mimicry between Orchis israelitica Baumann and Dafni (Orchidaceae) and Bellevalia felexuosa Boiss (Liliaceae). Oecologia 49:229–232

    Article  Google Scholar 

  • Delforge P (2005) Guide des orchidées d’Europe, d’Afrique du Nord et du Proche-Orient. Delachaux & Niestlé, Paris

    Google Scholar 

  • Dodson CH, Frymire GP (1961) Natural pollination of orchids. Mo Bot Gard Bull 49:133–152

    Google Scholar 

  • Ellis AG, Johnson SD (2010) Floral mimicry enhances pollen export: the evolution of pollination by sexual deceit outside of the Orchidaceae. Am Nat 176:143–151

    Article  Google Scholar 

  • Evans LJ, Raine NE (2014) Changes in learning and foraging behaviour within developing bumble bee (Bombus terrestris) colonies. PLoS One 9:e90556

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaskett AC (2010) Orchid pollination by sexual deception: pollinator perspectives. Biol Rev 86:33–75

    Article  Google Scholar 

  • Geber MA, Moeller DA (2006) Pollinator responses to plant communities and implications for reproductive character evolution. In: Hardes LD, Barrett SCH (eds) The ecology and evolution of flowers. Oxford University Press, Oxford, pp 102–119

    Google Scholar 

  • Gigord LDB, Macnair MR, Stritesky M, Smithson A (2002) The potential for floral mimicry in rewardless orchids: an experimental study. Proc R Soc B 269:1389–1395

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldblatt P, Manning J (2006) Radiation of pollination systems in the Iridaceae of sub-saharan Africa. Ann Bot 97:317–344

    Article  PubMed  PubMed Central  Google Scholar 

  • Gumbert A, Kunze J (2001) Color similarity to rewarding model plants affects pollination in a food deceptive orchid, Orchis boryi. Biol J Linn Soc 72:419–433

    Article  Google Scholar 

  • Imbert E, Wang H, Conchou L, Vincent H, Talavera M, Schatz B (2014) Positive effect of the yellow morph on female reproductive success in the flower colour polymorphic Iris lutescens (Iridaceae), a deceptive species. J Evolut Biol 27:1965–1974

    CAS  Article  Google Scholar 

  • Internicola AI, Page PA, Bernasconi G, Gigord LDB (2007) Competition for pollinator visitation between deceptive and rewarding artificial inflorescences: an experimental test of the effects of floral color similarity and spatial mingling. Funct Ecol 21:864–872

    Article  Google Scholar 

  • Jersáková J, Johnson SD, Kindlmann P (2006) Mechanisms and evolution of deceptive pollination in orchids. Biol Rev 81:219–235

    Article  PubMed  Google Scholar 

  • Johnson SD (2000) Batesian mimicry in the non-rewarding orchid Disa pulchra, and its consequences for pollinator behavior. Biol J Linn Soc 71:119–132

    Article  Google Scholar 

  • Johnson SD, Peter CI, Nilsson A, Ågren J (2003) Pollination success in a deceptive orchid is enhanced by co-occurring rewarding magnet plants. Ecology 84:2919–2927

    Article  Google Scholar 

  • Kullenberg B, Bergström G (1976) The pollination of Ophrys orchids. Bot Not 129:11–19

    Google Scholar 

  • Mathew B (1987) The smaller bulbs. Batsford BT, London

    Google Scholar 

  • Moeller DA, Geber MA (2005) Ecological context of the evolution of self-pollination in Clarkia xantiana: population size, plant communities, and reproductive assurance. Evolution 59:786–799

    PubMed  Google Scholar 

  • Nilsson AL (1983) Mimesis of bellflower (Campanula) by the red helleborine orchid Cephalanthera rubra. Nature 305:799–800

    Article  Google Scholar 

  • Pellegrino G (2014) Pollinator limitation on reproductive success in Iris tuberosa L. (Iridaceae). AoB Plants. doi:10.1093/aobpla/plu089

    PubMed  PubMed Central  Google Scholar 

  • Pellegrino G, Musacchio A, Noce ME, Palermo AM, Widmer A (2005) Reproductive versus floral isolation among morphologically similar Serapias L. species (Orchidaceae). Jour Hered 96:15–23

    CAS  Article  Google Scholar 

  • Pellegrino G, Bellusci F, Musacchio A (2008) Double floral mimicry and the magnet species effect in dimorphic co-flowering species, the deceptive orchid Dactylorhiza sambucina and rewarding Viola aethnensis. Preslia 80:411–422

    Google Scholar 

  • Peter CI, Johnson SD (2008) Mimics and magnets: the importance of color and ecological facilitation in floral deception. Ecology 89:1583–1595

    Article  PubMed  Google Scholar 

  • Phillips RD, Peakall R, Hutchinson MF, Linde CC, Xu T, Dixon KW, Hopper SD (2014) Specialized ecological interactions and plant species rarity: the role of pollinators and mycorrhizal fungi across multiple spatial scales. Biol Conserv 169:285–295

    Article  Google Scholar 

  • Pignatti S (1982) Flora d’Italia. Edagricole Bologna, Italy

    Google Scholar 

  • Renner SS (2006) Rewardless flowers in the angiosperms and the role of insect cognition in their evolution. In: Waser NM, Ollerton J (eds) Plant–pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago, pp 123–144

    Google Scholar 

  • Sapir Y, Shmida A, Fragman O, Comes HP (2002) Morphological variation of the Onocyclus irises (Iris: iridaceae) in the southern Levant. Bot J Linn Soc 139:369–382

    Article  Google Scholar 

  • Schiestl FP (2005) On the success of a swindle: pollination by deception in orchids. Naturwissenschaften 92:255–264

    CAS  Article  PubMed  Google Scholar 

  • Schiestl FP, Ayasse M, Paulus HF, Löfstedt C, Hansson BS, Ibarra F, Francke W (1999) Orchid pollination by sexual swindle. Nature 399:421–422

    CAS  Article  Google Scholar 

  • Schiestl FP, Peakall R, Mant J, Ibarra F, Schulz C, Francke S, Francke W (2003) The chemistry of sexual deception in an orchid–wasp pollination system. Science 302:437–438

    CAS  Article  PubMed  Google Scholar 

  • Schiestl FP, Peakall R, Mant J (2004) Chemical communication in the sexually deceptive orchid genus Cryptostylis. Bot J Linn Soc 144:199–205

    Article  Google Scholar 

  • Schmid-Egger C, Scheuchl E (1997) Illustrierte Bestimmungstabellen der Wildbienen Deutschlands und Österreichs, Band III, Andrenidae. Eigenverlag, Velden

  • Scopece G, Musacchio A, Widmer A, Cozzolino S (2007) Pattern of reproductive isolation in Mediterranean deceptive orchids. Evolution 61:2623–2642

    Article  PubMed  Google Scholar 

  • Spaethe J, Streinzer M, Paulus HF (2010) Why sexually deceptive orchids have colored flowers. Commun Integr Biol 3:139–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Steiner KE (1998) The evolution of beetle pollination in a South African orchid. Am J Bot 85:1180–1193

    CAS  Article  PubMed  Google Scholar 

  • Stökl J, Paulus H, Dafni A, Schulz C, Francke W, Ayasse M (2005) Pollinator attracting odour signals in sexually deceptive orchids of the Ophrys fusca group. Plant Syst Evol 254:105–120

    Article  Google Scholar 

  • Stökl J, Schlüter PM, Stuessy TF, Hannes F, Paulus GA, Ayasse M (2008) Scent variation and hybridization cause the displacement of a sexually deceptive orchid species. Am J Bot 95:472–481

    Article  PubMed  Google Scholar 

  • Thompson JD (1978) Effect of stand composition on insect visitation in two-species mixtures of Hieracium. Am Midl Nat 100:431–440

    Article  Google Scholar 

  • Tremblay R, Ackerman JD, Zimmerman JK, Calvo RN (2005) Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol J Linn Soc 84:1–54

    Article  Google Scholar 

  • van der Cingel NA (1995) An atlas of orchid pollination. Balkema AA, Rotterdam

    Google Scholar 

  • Velleman PF (2012) DataDesk: an interactive package for data exploration, display, model building, and data analysis. WIREs Comput Stat 4:407–414

    Article  Google Scholar 

  • Vereecken NJ, Wilson CA, Hötling S, Schulz S, Banketov SA, Mardulyn P (2012) Pre-adaptations and the evolution of pollination by sexual deception: cope’s rule of specialization revisited. Proc R Soc B 279:4786–4794

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitehead MR, Peakall R (2014) Pollinator specificity drives strong prepollination reproductive isolation in sympatric sexually deceptive orchids. Evolution 68:1561–1575

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Pellegrino.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pellegrino, G., Bellusci, F. & Palermo, A.M. Who helps whom? Pollination strategy of Iris tuberosa and its relationship with a sexually deceptive orchid. J Plant Res 129, 1051–1059 (2016). https://doi.org/10.1007/s10265-016-0853-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-016-0853-9

Keywords

  • Aliphatic compounds
  • Fruit set
  • Iridaceae
  • Morphometry
  • Orchidaceae
  • Pollinators