Skip to main content

A WD40 protein, AtGHS40, negatively modulates abscisic acid degrading and signaling genes during seedling growth under high glucose conditions

Abstract

The Arabidopsis thaliana T-DNA insertion mutant glucose hypersensitive (ghs) 40-1 exhibited hypersensitivity to glucose (Glc) and abscisic acid (ABA). The ghs40-1 mutant displayed severely impaired cotyledon greening and expansion and showed enhanced reduction in hypocotyl elongation of dark-grown seedlings when grown in Glc concentrations higher than 3 %. The Glc-hypersensitivity of ghs40-1 was correlated with the hyposensitive phenotype of 35S::AtGHS40 seedlings. The phenotypes of ghs40-1 were recovered by complementation with 35S::AtGHS40. The AtGHS40 (At5g11240) gene encodes a WD40 protein localized primarily in the nucleus and nucleolus using transient expression of AtGHS40-mRFP in onion cells and of AtGHS40-EGFP and EGFP-AtGHS40 in Arabidopsis protoplasts. The ABA biosynthesis inhibitor fluridone extensively rescued Glc-mediated growth arrest. Quantitative real time-PCR analysis showed that AtGHS40 was involved in the control of Glc-responsive genes. AtGHS40 acts downstream of HXK1 and is activated by ABI4 while ABI4 expression is negatively modulated by AtGHS40 in the Glc signaling network. However, AtGHS40 may not affect ABI1 and SnRK2.6 gene expression. Given that AtGHS40 inhibited ABA degrading and signaling gene expression levels under high Glc conditions, a new circuit of fine-tuning modulation by which ABA and ABA signaling gene expression are modulated in balance, occurred in plants. Thus, AtGHS40 may play a role in ABA-mediated Glc signaling during early seedling development. The biochemical function of AtGHS40 is also discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

ABA:

Abscisic acid

ABI :

ABA insensitive

DAPI:

4′,6-Diamidino-2-phenylindole

EGFP:

Enhanced green fluorescent protein

EtBr:

Ethidium bromide

ghs :

Glucose hypersensitive

Glc:

Glucose

HXK1 :

Hexokinase1

mRFP:

Monomeric red fluorescent protein

Mtl:

Mannitol

qRT-PCR:

Quantitative real-time-PCR

RT-PCR:

Reverse transcriptase-polymerase chain reaction

WT:

Wild type

References

  • Ananieva EA, Gillaspy GE, Ely A, Burnette RN, Erickson F (2008) Interaction of the WD40 domain of a myoinositol polyphosphate 5-phosphatase with SnRK1 links inositol, sugar, and stress signaling. Plant Physiol 148:1868–1882

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, León P (2000) Analysis of Arabidopsis glucose-insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14:2085–2096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arroyo A, Bossi F, Finkelstein RR, Leόn P (2003) Three genes that affect sugar sensing (abscisic acid insensitive 4, abscisic acid insensitive 5, and constitutive triple response 1) are differentially regulated by glucose in Arabidopsis. Plant Physiol 133:231–242

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Bossi F, Cordoba E, Dupré P, Mendoza MS, Román CS, León P (2009) The Arabidopsis ABA-INSENSITIVE (ABI) 4 factor acts as a central transcription activator of the expression of its own gene, and for the induction of ABI5 and SBE2.2 genes during sugar signaling. Plant J 59:359–374

    CAS  Article  PubMed  Google Scholar 

  • Bu Q, Li H, Zhao Q, Zhang J, Wu X, Sun J et al (2009) The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development. Plant Physiol 150:463–481

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho RF, Carvalho SD, Duque P (2010) The plant-specific SR45 protein negatively regulates glucose and ABA signaling during early seedling development in Arabidopsis. Plant Physiol 154:772–783

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Chen JG, Ullah H, Temple B, Liang J, Guo J, Alonso JM et al (2006) RACK1 mediates multiple hormone responsiveness and developmental processes in Arabidopsis. J Exp Bot 57:2697–2708

    CAS  Article  PubMed  Google Scholar 

  • Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A et al (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Chothia C, Hubbard T, Brenner S, Barns H, Murzin A (1997) Protein folds in the all-beta and all-alpha classes. Annu Rev Biophys Biomol Struct 26:597–627

    CAS  Article  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  Article  PubMed  Google Scholar 

  • Dekkers BJ, Schuurmans JA, Smeekens SC (2008) Interaction between sugar and abscisic acid signaling during early seedling development in Arabidopsis. Plant Mol Biol 67:151–167

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10:1043–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gachomo EW, Jimenez-Lopez JC, Baptiste LJ, Kotchoni SO (2014) GIGANTUS1 (GTS1), a member of Transducin/WD40 protein superfamily, controls seed germination, growth and biomass accumulation through ribosome-biogenesis protein interactions in Arabidopsis thaliana. BMC Plant Biol 14:37. doi:10.1186/1471-2229-14-37

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao X, Chen Z, Zhang J, Li X, Chen G, Li X et al (2012) OsLIS-L1 encoding a lissencephaly type-1-like protein with WD40 repeats is required for plant height and male gametophyte formation in rice. Planta 235:713–727

    CAS  Article  PubMed  Google Scholar 

  • Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8:93–102

    CAS  Article  PubMed  Google Scholar 

  • Guo J, Wang J, Xi L, Huang WD, Liang J, Chen JG (2009) RACK1 is a negative regulator of ABA responses in Arabidopsis. J Exp Bot 60:3819–3833

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Hsu YF, Yu SC, Yang CY, Wang CS (2011) Lily ASR protein-conferred cold and freezing resistance in Arabidopsis. Plant Physiol Biochem 49:937–945

    CAS  Article  PubMed  Google Scholar 

  • Hsu YF, Chen YC, Hsiao YC, Wang BJ, Lin SY, Cheng WH et al (2014) AtRH57, a DEAD-box RNA helicase, is involved in feedback inhibition of glucose-mediated abscisic acid accumulation during seedling development and additively affects pre-ribosomal RNA processing with high glucose. Plant J 77:119–135

    CAS  Article  PubMed  Google Scholar 

  • Huang Y, Li CY, Pattison DL, Gray WM, Park S, Gibson SI (2010) SUGAR-INSENSITIVE3, a RING E3 ligase, is a new player in plant sugar response. Plant Physiol 152:1889–1900

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Wang Y, Li QF, Björn LO, He JX, Li SS (2012) Arabidopsis STO/BBX24 negatively regulates UV-B signaling by interacting with COP1 and repressing HY5 transcriptional activity. Cell Res 22:1046–1057

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M et al (2007) Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715–719

    CAS  Article  PubMed  Google Scholar 

  • Lee JH, Terzaghi W, Deng XW (2011) DWA3, an Arabidopsis DWD protein, acts as a negative regulator in ABA signal transduction. Plant Sci 180:352–357

    CAS  Article  PubMed  Google Scholar 

  • Lee SA, Yoon EK, Heo JO, Lee MH, Hwang I, Cheong H et al (2012) Analysis of Arabidopsis glucose insensitive growth mutants reveals the involvement of the plastidial copper transporter PAA1 in glucose-induced intracellular signaling. Plant Physiol 159:1001–1012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Leόn P, Sheen J (2003) Sugar and hormone connections. Trends Plant Sci 8:110–116

    Article  Google Scholar 

  • Li D, Roberts R (2001) WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci 58:2085–2097

    CAS  Article  PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand S, Chua NH (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA 98:4782–4787

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32:317–328

    CAS  Article  PubMed  Google Scholar 

  • Maliga P, Klessig DF, Cashmore AR, Gruissem W, Varner JE (1995) Methods in plant molecular biology: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Mccurdy RD, Mcgrath JJ, Mackay-sim A (2008) Validation of the comparative quantification method of real-time PCR analysis and a cautionary tale of housekeeping gene selection. Gene Ther Mol Biol 12:15–24

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco. Physiol Plant 15:473–497

    CAS  Article  Google Scholar 

  • Pattanaik S, Patra B, Singh SK, Yuan L (2014) An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis. Front Plant Sci 5:259. doi:10.3389/fpls.2014.00259

    Article  PubMed  PubMed Central  Google Scholar 

  • Penfield S, Li Y, Gilday AD, Graham S, Graham IA (2006) Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell 18:1887–1899

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Fernández J, Román A, De Las Rivas J, Bustelo XR, Dosil M (2007) The 90S preribosome is a multimodular structure that is assembled through a hierarchical mechanism. Mol Cell Biol 27:5414–5429

    Article  PubMed  PubMed Central  Google Scholar 

  • Price J, Li TC, Kang SG, Na JK, Jang JC (2003) Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol 132:1424–1438

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Ramsay NA, Glover BJ (2005) MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10:63–70

    CAS  Article  PubMed  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14(Suppl):S185–S205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanford JC, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483–509

    CAS  Article  PubMed  Google Scholar 

  • Shi DQ, Liu J, Xiang YH, Ye D, Sundaresan V, Yang WC (2005) SLOW WALKER1, essential for gametogenesis in Arabidopsis, encodes a WD40 protein involved in 18S ribosomal RNA biogenesis. Plant Cell 17:2340–2354

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Shi S, Chen W, Sun W (2011) Comparative proteomic analysis of the Arabidopsis cbl1 mutant in response to salt stress. Proteomics 11:4712–4725

    CAS  Article  PubMed  Google Scholar 

  • Smith TF, Gaitatzes C, Saxena K, Neer EJ (1999) The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24:181–185

    CAS  Article  PubMed  Google Scholar 

  • Stirnimann CU, Petsalaki E, Russell RB, Müller CW (2010) WD40 proteins propel cellular networks. Trends Biochem Sci 35:565–574

    CAS  Article  PubMed  Google Scholar 

  • Stone SL, Williams LA, Farmer LM, Vierstra RD, Callis J (2006) KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18:3415–3428

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Ullah H, Chen JG, Wang S, Jones AM (2002) Role of a heterotrimeric G protein in regulation of Arabidopsis seed germination. Plant Physiol 129:897–907

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Ullah H, Chen JG, Temple B, Boyes DC, Alonso JM, Davis KR et al (2003) The β-subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Plant Cell 15:393–409

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • van Nocker S, Ludwig P (2003) The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genom 4:50

    Article  Google Scholar 

  • Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J Exp Bot 57:201–212

    CAS  Article  PubMed  Google Scholar 

  • Xie T, Ren R, Zhang YY, Pang Y, Yan C, Gong X et al (2012) Molecular mechanism for inhibition of a critical component in the Arabidopsis thaliana abscisic acid signal transduction pathways, SnRK2.6, by protein phosphatase ABI1. J Biol Chem 287:794–802

    CAS  Article  PubMed  Google Scholar 

  • Xiong L, Ishitani M, Lee H, Zhu JK (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13:2063–2083

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Yang CY, Chen YC, Jauh GY, Wang CS (2005) A lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis. Plant Physiol 139:836–846

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    CAS  Article  PubMed  Google Scholar 

  • Zeng CJ, Lee YR, Liu B (2009) The WD40 repeat protein NEDD1 functions in microtubule organization during cell division in Arabidopsis thaliana. Plant Cell 21:1129–1140

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Gao L, Wang H, Chen X, Wang Y, Yang H et al (2013) The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Funct Integr Genomics 13:75–98

    CAS  Article  PubMed  Google Scholar 

  • Zheng Z, Xu X, Crosley RA, Greenwalt SA, Sun Y, Blakeslee B et al (2010) The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis. Plant Physiol 153:99–113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Jang JC, Jones TL, Sheen J (1998) Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci USA 95:10294–10299

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Jeong JC, Zhu Y, Sokolchik I, Miyazaki S, Zhu JK et al (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci USA 105:4945–4950

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Science and Technology, Taiwan, Republic of China (NSC-103-2911-I-005-301, NSC-102-2911-I-005-301) and the Ministry of Education, Taiwan, R.O.C. under the ATU plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Co-Shine Wang.

Additional information

Y.-C. Hsiao, Y.-F. Hsu and Y.-C. Chen have equal contribution in this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2630 kb)

Supplementary material 2 (DOCX 26 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hsiao, YC., Hsu, YF., Chen, YC. et al. A WD40 protein, AtGHS40, negatively modulates abscisic acid degrading and signaling genes during seedling growth under high glucose conditions. J Plant Res 129, 1127–1140 (2016). https://doi.org/10.1007/s10265-016-0849-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-016-0849-5

Keywords

  • ABA
  • Arabidopsis thaliana
  • Glc-hypersensitive
  • Seedling growth
  • WD40