Journal of Plant Research

, Volume 129, Issue 5, pp 823–831 | Cite as

Camellia nanningensis sp. nov.: the earliest fossil wood record of the genus Camellia (Theaceae) from East Asia

  • Lu-Liang Huang
  • Jian-Hua Jin
  • Cheng Quan
  • Alexei A. Oskolski
Regular Paper


A new species Camellia nanningensis was described on the basis of well-preserved mummified wood from the upper Oligocene Yongning Formation of Nanning Basin in Guangxi Province, South China. This represents the most ancient fossil wood assigned to Camellia, and the earliest fossil record of the family Theaceae in China. This fossil material shows that Camellia occurred in China as early as the late Oligocene, suggesting more ancient radiation of this genus than estimated by molecular dating.


Camellia Theaceae Mummified wood Late Oligocene Nanning Basin South China 



This study was supported by the National Natural Science Foundation of China (Grant Nos. 41210001, 41528201, 41572011, 41372002), the joint Project of the National Natural Science Foundation of China and the Russian Foundation for Basic Research (Grant Nos. 41611130044, 16-55-53007), the Scientific Research Fund, Hongda Zhang, Sun Yat-sen University, and the National Basic Research Program of China (No. 2012CB822003). We thank the University of Johannesburg and the Komarov Botanical Institute (institutional research Project No. 01201456545) for financial support for A.A.O. We thank graduate students majoring in plant science at Sun Yat-sen University for participating in the field collection of the fossils. We are grateful to Prof. Robert A. Spicer (The Open University, UK) for English improvements.


  1. Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121CrossRefGoogle Scholar
  2. Chaney RW (1972) Miocene forests of the Pacific Basin: their ancestors and their descendants. In: Tanai E (ed) Tertiary floras of Japan, vol 2. Association of Paleobotanical Research in Japan, Tokyo, pp 209–239 (Reprinted from 1967, Jubilee Publ. Commem. Prof. Sasa, 60th Birthday) Google Scholar
  3. Choi SK, Kim K, Jeong EK, Terada K, Suzuki M, Uematsu H (2010) Fossil woods from the Miocene in the Yamagata Prefecture, Japan. IAWA J 31:95–117CrossRefGoogle Scholar
  4. Committee IAWA (1989) IAWA list of microscopic features for hardwood identification. IAWA Bull 10:219–332CrossRefGoogle Scholar
  5. Crawley M (2001) Angiosperm woods from British lower cretaceous and palaeogene deposits. Special Papers in Palaeontology 66. The Palaeontological AssociationGoogle Scholar
  6. Cronquist A (1981) An integrated system of classification of flowering plants [M]. Columbia University Press, New YorkGoogle Scholar
  7. Deng L, Baas P (1990) Wood anatomy of trees and shrubs from China II. Theaceae. IAWA Bull 11:337–378CrossRefGoogle Scholar
  8. Deng L, Baas P (1991) The wood anatomy of the Theaceae. IAWA Bull 12:333–353CrossRefGoogle Scholar
  9. Dickison WC (1977) Wood anatomy of Weinmannia (Cunoniaceae). Bull Torrey Bot Club 104:12–23CrossRefGoogle Scholar
  10. Dickison WC (1980) Comparative wood anatomy and evolution of the Cunoniaceae. Allertonia 2:281–321Google Scholar
  11. Giraud B, Bussert R, Schrankb E (1992) A new Theacean wood from the cretaceous of northern Sudan. Rev Palaeobot Palynol 75:288–289CrossRefGoogle Scholar
  12. Gottwald H (1992) Hölzer aus Marinen Sanden des Oberen Eozän von Helmstedt (Niedersachsen). Palaeontogr B 225:27–103Google Scholar
  13. Grambast-Fessard N (1969) Contribution al’étude des flores Tertiaires des régions provençales et alpines: V. Deux bois de dicotyledones a caracteres primitifs du Miocene superieur de Castellane. Naturalia Monspel Sér Bot 20:105–118Google Scholar
  14. Grote PJ, Dilcher DL (1989) Investigations of angiosperms from the eocene of North America: a new genus of theaceae based on fruit and seed remains. Bot Gaz 150:190–206CrossRefGoogle Scholar
  15. Heslewood MM, Wilson PG (2013) A new combination in Ackama (Cunoniaceae). J Plant Syst 15:5–7Google Scholar
  16. Huang G (1986) Comparative anatomical studies on the woods of Hamamelidaceae in China. Acta Sci Nat Univ Sunyatseni 1:22–28Google Scholar
  17. Huzioka K, Takahasi E (1972) The Eocene flora of the Ube coal-field, southwest Honshu, Japan. In: Tanai T (ed) Tertiary floras of Japan, vol 2. Association of Paleobotanical Research in Japan, Tokyo, pp 1–88 (Reprinted from 1970, J. Min. Coll. Akita Univ., Ser. A, 4:1–88, 21 pl.) Google Scholar
  18. Ina H (1988) Plants from the Miocene Tomikusa Group in the Southern part of Nagano Prefecture, Japan. Bull Mizunami Fossil Mus 14:31–72Google Scholar
  19. Ingle HD, Dadswell HE (1956) The anatomy of the timbers of the south-west Pacific area IV. Cunoniaceae, Davidsoniaceae and Eucryphiaceae. Aust J Bot 4:125–151CrossRefGoogle Scholar
  20. Inside Wood (2004-onwards) NC State University, Raleigh. (Accessed 1 Mar 2016)
  21. Ishida S (1970) The Noroshi flora of Note Peninsula, Central Japan. Memoirs of the Faculty of Science, Kyoto University. Ser Geol Mineral 37:1–112Google Scholar
  22. Jarmolenko AV (1941) The fossil woods of the Maikop series from the southwestern Transcaucasia. Trudy Bot Inst Akad Nauk SSSR Ser 1:7–34Google Scholar
  23. Jeong EK, Kim K, Kim JH, Suzuki M (2004) Fossil woods from Janggi Group (Early Miocene) in Pohang Basin, Korea. J Plant Res 117:183–189CrossRefPubMedGoogle Scholar
  24. Jeong EK, Kim K, Suzuki M, Jong WK (2009) Fossil woods from the lower coal-bearing formation of the Janggi Group (Early Miocene) in the Pohang Basin, Korea. Rev Palaeobot Palynol 153:124–138CrossRefGoogle Scholar
  25. Kolakovskyi AA (1964) The Pliocene flora of Kodor. Academy of Sciences of the Georgian SSR, Sukhumi (in Russian) Google Scholar
  26. Kramer K (1974) Die Tertiären Hölzer Südost-Asiens (Unter Ausschluss Der Dipterocarpaceae). 1. Teil. Palaeontogr Abt B 144:45–181Google Scholar
  27. Kräusel R (1939) Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens. IV. Die fossilen Floren Ägyptens. Abh Bayer Akad Wiss Math Naturwiss Abt 47:1–140Google Scholar
  28. Li C-Y, Wang C-M, Hsiao J-Y, Yang C-H (2003) Two fossil dicotyledonous woods from the Kungkuan Tuff (Early Miocene), Northern Taiwan. Coll Res 16:71–78Google Scholar
  29. Li Y, Awasthi N, Yang J, Li C-S (2013) Fruits of Schima (Theaceae) and seeds of Toddalia (Rutaceae) from the Miocene of Yunnan Province, China. Rev Palaeobot Palynol 193:119–127CrossRefGoogle Scholar
  30. Licht A, Boura A, Franceschi DD, Ducrocq S, Soe AN, Jaeger J-J (2014) Fossil woods from the late middle Eocene Pondaung Formation, Myanmar. Rev Palaeobot Palynol 202:29–46CrossRefGoogle Scholar
  31. Macovei G, Givulescu R (2006) The present stage in the knowledge of the fossil flora at Chiuzbaia, Maramures, Romania. Carpth. J Earth Environ Sci 1:41–52Google Scholar
  32. Metcalfe CR, Chalk L (1950) Anatomy of the dicotyledons, vol 1, 2. Clarendon, OxfordGoogle Scholar
  33. Ming T-L, Zhang W-J (1996) The evolution and distribution of genus Camellia. Acta Bot Yunannica 18:1–13 (in Chinese) Google Scholar
  34. Palamarev E, Kitanov G, Staneva K, Bozukov V (2000) Fossil flora from Paleogene sediments in the northern area of the Mesta Graben in the Western Rhodopes. II. Analysis and stratigraphic importance of the flora. Phytol Balc 6(SOFIA):3–11Google Scholar
  35. Patel RN (1990) Wood anatomy of the dicotyledons indigenous to New Zealand 20. Cunoniaceae. N Z J Bot 28:347–355CrossRefGoogle Scholar
  36. Poole I, Cantrill DJ (2001) Fossil woods from Williams Point Beds, Livingston Island, Antarctica: a Late Cretaceous southern high latitude flora. Palaeontology 44:1081–1112CrossRefGoogle Scholar
  37. Poole I, Cantrill DJ, Hayes P, Francis JE (2000) The fossil record of Cunoniaceae: new evidence from Late Cretaceous wood of Antarctica. Rev Palaeobot Palynol 111:127–144CrossRefPubMedGoogle Scholar
  38. Poole I, Mennega AMW, Cantrill DJ (2003) Valdivian ecosystems in the Late Cretaceous and Early Tertiary of Antarctica: further evidence from myrtaceoous and eucryphiaceous fossil wood. Rev Palaeobot Palynol 124:9–27CrossRefGoogle Scholar
  39. Quan C, Fu Q-Y, Shi G-L, Liu Y-S, Li L, Liu X-Y, Jin J-H (2016) First Oligocene mummified plant Lagerstätte in the low latitudes of East Asia. Sci China Earth Sci 59:445–448CrossRefGoogle Scholar
  40. Raigemborn M, Brea M, Zucol A, Matheos S (2009) Early Paleogene climate at mid latitude in South America: mineralogical and paleobotanical proxies from continental sequences in Golfo San Jorge basin (Patagonia, Argentina). Geological Acta 7:125–145CrossRefGoogle Scholar
  41. Salard-Cheboldaeff M, Dupéron-Laudoueneix M, Dupéron J (2012) Bois minéralisés cénozoïques de Nouvelle-Calédonie. Palaeontogr Abt B Palaeobot Palaeophytol 288:65–97Google Scholar
  42. Skvortsova NT (1975) Comparative morphological studies on representatives of the family Hamamelidaceae and their phylogenetic relationships. In: Budantsev LJ (ed) Problems of comparative morphology of the seed plants. Nauka, Leningrad, pp 7–24 (in Russian) Google Scholar
  43. Srivastava R, Suzuki M (2001) More fossil woods from the palaeogene of northern Kyushu, Japan. IAWA J 22:85–105CrossRefGoogle Scholar
  44. Suzuki M, Hiraya C (1989) Fossil wood flora from the pumice tuff of Yanagida formation (Lower Miocene) at Mawaki, Noto Peninsula. Ann Sci Coll Lib Arts Kanazawa Univ 26:47–75Google Scholar
  45. Suzuki M, Terada K (1996) Fossil wood from the lower Miocene Yanagida Formation, Noto Peninsula, central Japan. IAWA J 17:365–392CrossRefGoogle Scholar
  46. Takhtajan A (1997) Diversity and classification of flowering plants. Columbia University Press, New York 663 pp Google Scholar
  47. Terada K, Asakawa TO, Nishida H (2006) Fossil woods from Arroyo Cardenio, Chile Chico Province, Aisen (XI) Region, Chile. In: Nishida H (ed). Post-Cretaceous floristic changes in southern Patagonia, Chile. Chuo University, Tokyo, pp 57–65Google Scholar
  48. Van Der Burgh J (1973) Hölzer der niederrheinischen braunkohlenformation, 2. Hölzer der braunkohlengruben “Maria Theresia” zu herzogenrath, “Zukunft West” zu eschweiler und “Victor” (Zülpich mitte) zu Zülpich. Nebst einer systematisch-anatomischen bearbeitung der gattung Pinus L. Rev Palaeobot Palynol 15:73–275CrossRefGoogle Scholar
  49. Wheeler EA., Dillhoff TA (2009) The Middle Miocene fossil wood flora from Vantage. Nationaal Herbarium Nederland: Washington, LeidenGoogle Scholar
  50. Wheeler EA, Manchester SR (2002) Woods of the middle Eocene Nut Beds flora, Clarno Formation, Oregon, USA. Int Assoc Wood Anat J (Suppl 3):1–188Google Scholar
  51. Wheeler EA, Lee SJ, Baas P (2010) Wood anatomy of the Altingiaceae and Hamamelidaceae. IAWA J 31:399–423Google Scholar
  52. Wolfe JA (1968) Paleogene biostratigraphy of nonmarine rocks in King County. Washington. US Geol. Surv Prof Pap 571:1–33 (7 pl) Google Scholar
  53. Ye C-X, Shi X-G (2004) Land change science society of China and the construction of ecological Symposium (in Chinese) Google Scholar
  54. Zhang HD (1981) A taxonomy of the genus Camellia. The Editorial Staff of the Journal of Sun Yatsen University. 180 pp (in Chinese) Google Scholar
  55. Zhang WJ, Ming TL (1999) A cytogeological study of genus Camellia. Acta Bot Yunnanica 21:184–196Google Scholar
  56. Zhang HD, Ren SX (1998) The flora of China [M]. Beijing Sci Press 49(3):195 (in Chinese) Google Scholar
  57. Zhang W, Kan S-L, Zhao H, Li Z-Y, Wang X-Q (2014) Molecular phylogeny of tribe Theeae (Theaceae s.s.) and its implications for generic delimitation. PLoS ONE 9:e98133CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zhao Z (1993) New Anthracothere materials from the Paleogene of Guangxi. Vertebrata PalAsiat 31:13–190 (in Chinese with English abstract) Google Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, and School of Life SciencesSun Yat-sen UniversityGuangzhouChina
  2. 2.Research Center of Paleontology and Stratigraphy, and MOE Key-Lab for Evolution of Past Life and Environment in Northeast AsiaJilin UniversityChangchunChina
  3. 3.Department of Botany and Plant BiotechnologyUniversity of JohannesburgJohannesburgSouth Africa
  4. 4.Komarov Botanical Institute of the Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations