Skip to main content

Advertisement

Log in

A δ15N assessment of nitrogen deposition for the endangered epiphytic orchid Laelia speciosa from a city and an oak forest in Mexico

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Atmospheric nitrogen deposition poses a major threat to global biodiversity. Tropical epiphytic plants are especially at risk given their reliance on atmospheric sources of nutrients. The leaf, pseudobulb, and root carbon and nitrogen content, C:N ratio, as well as the nitrogen isotopic composition were studied for individuals of Laelia speciosa from a city and from an oak forest in Mexico. The nitrogen content of leaves was similar between the city and the oak forest, reaching 1.3 ± 0.2 % (dry mass). The δ15N of leaves, pseudobulbs, and roots reached 5.6 ± 0.2 ‰ in the city, values found in sites exposed to industrial and vehicular activities. The δ15N for plant from the oak forest amounted to –3.1 ± 0.3 ‰, which is similar to values measured from sites with low industrial activities. Some orchids such as Laelia speciosa produce a single pseudobulb per year, i.e., a water and nutrient storage organ, so the interannual nitrogen deposition was studied by considering the ten most recent pseudobulbs for plants from either site formed between 2003 and 2012. The C:N ratio of the ten most recent pseudobulbs from the oak forest, as well as that of the pseudobulbs formed before 2010 for plants in the city were indistinguishable from each other, averaging 132.4 ± 6.5, while it was lower for the two most recent pseudobulbs in the city. The δ15N values of pseudobulbs from the oak forest averaged ‒4.4 ± 0.1 ‰ for the entire series. The δ15N ranged from 0.1 ± 1.6 ‰ for the oldest pseudobulb to 4.7 ± 0.2 ‰ for the pseudobulb formed in the city from 2008 onwards. Isotopic analysis and the C:N ratio for L. speciosa revealed that rates of nitrogen deposition were higher in the city than in the forest. The δ15N values of series of pseudobulbs showed that it is possible to track nitrogen deposition over multiple years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ammann M, Siegwolf R, Pichlmayer F, Suter M, Saurer M, Brunold C (1999) Estimating the uptake of traffic-derived NO2 from 15N abundance in Norway spruce needles. Oecologia 118:124–131

    Article  CAS  PubMed  Google Scholar 

  • Arciga-Pedraza A (2010) Evaluación del potencial bioindicador de la depositación de nitrógeno de dos musgos comunes. Dissertation, Universidad Michoacana de San Nicolás de Hidalgo

  • Austin AT, Bustamante MMC, Nardoto GB, Mitre SK, Pérez T, Ometto JPHB, Ascarrunz NL, Forti MC, Longo K, Gavito ME, Enrich-Prast A, Martinelli LA (2013) Latin America’s nitrogen challenge. Science 340:149

    Article  CAS  PubMed  Google Scholar 

  • Bauer G, Bazzaz F, Minocha R, Long S, Magill A, Aber J, Berntson GM (2004) Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.) stand in the NE United States. For Ecol Manage 196:173–186. doi:10.1016/j.foreco.2004.03.032

    Article  Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59. doi:10.1890/08-1140.1

    Article  CAS  PubMed  Google Scholar 

  • Bragazza L, Limpens J, Gerdol R, Grosvernier P, Hájek M, Hájek T, Hajkova P, Hansen P, Iacumin P, Kutnar L, Rydin H, Tahvanainen T (2005) Nitrogen concentration and delta15N signature of ombrotrophic Sphagnum mosses at different N deposition levels in Europe. Glob Chang Biol 11:106–114. doi:10.1111/j.1365-2486.2004.00886.x

    Article  Google Scholar 

  • Britto T, Kronzucker H (2002) NH+4 toxicity in higher plants: a critical review. J Plant Physiol 159:567–584. doi:10.1078/0176-1617-0774

    Article  CAS  Google Scholar 

  • Brown KR, Thompson WA, Camm EL, Hawkins BJ, Guy RD (1996) Effects of N addition rates on the productivity of Picea sitchensis, Thuja plicata, and Tsuga heterophylla seedlings. Trees 10:198–205. doi:10.1007/BF02340772

    Article  Google Scholar 

  • Cardelús CL, Mack MC (2010) The nutrient status of epiphytes and their host trees along an elevational gradient in Costa Rica. Plant Ecol 207:25–37

    Article  Google Scholar 

  • Cárdenas MA, Delgadillo C (2009) Musgos del valle de México. Cuadernos del Instituto de Biología 40. Universidad Nacional Autónoma de México, Mexico City

  • Chapman HD (1965) Diagnostic criteria for plants and soils. University of California Division of Agricultural Sciences, Berkely

    Google Scholar 

  • Cufar K, Grabner M, Morgós A, Martınez del Castillo E, Merela M, de Luis M (2014) Common climatic signals affecting oak tree-ring growth in SE Central Europe. Trees 28:1267–1277. doi:10.1007/s00468-013-0972-z

    Article  Google Scholar 

  • Davidson OW (1960) Principles of orchid nutrition: proceedings of the Third World Orchid Conference. Staples Printers Ltd, Rochester

    Google Scholar 

  • Delwiche CC, Steyn PL (1970) Nitrogen isotope fractionation in soils and microbial reactions. Environ Sci Technol 4:929–935. doi:10.1021/es60046a004

    Article  CAS  Google Scholar 

  • Díaz-Álvarez EA, Lindig-Cisneros R, de la Barrera E (2015) Responses to simulated nitrogen deposition by the neotropical epiphytic orchid Laelia speciosa. PeerJ 3:e1021. doi:10.7717/peerj.1021

    Article  PubMed  PubMed Central  Google Scholar 

  • Drennan (2009) Temperature influences on plant species of arid and semi-arid regions with emphasis on CAM succulents. In: de la Barrera E, Smith WK (eds) Perspectives in biophysical plant ecophysiology: a tribute to Park S. Nobel. Universidad Nacional Autónoma de México, Mexico City

    Google Scholar 

  • Dressler RL (1981) The orchids: natural history and classification. Syst Bot 6:308–311

    Article  Google Scholar 

  • Ehleringer JR, Osmond BO (1989) Stable isotopes. In: Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW (eds) Plant physiological ecology field methods and instrumentation. Chapman & Hall, London

    Google Scholar 

  • Elliot EM, Kendal C, Boyer EW, Burns DA, Lear G, Golden HE, Harlin K, Bytnerowicz A, Butler TJ, Glatz R (2009) Dual nitrate isotopes in actively and pasively collected dry deposition: utility for partitioning NOx sources contributing to landscape nitrogen deposition. J Geophys Res 114:G04020

    Google Scholar 

  • English NB, Dettman DL, Sandquist DR, Williams DG (2007) Past climate changes and ecophysiological responses recorded in the isotope ratios of saguaro cactus spines. Oecologia 154:247–258. doi:10.1007/s00442-007-0832-x

    Article  PubMed  Google Scholar 

  • English NB, Dettman DL, Williams DG (2010) A 26-year stable isotope record of humidity and El Niño-enhanced precipitation in the spines of saguaro cactus, Carnegiea gigantea. Palaeogeogr Palaeoclimatol Palaeoecol 293:108–119. doi:10.1016/j.palaeo.2010.05.005

    Article  Google Scholar 

  • Epstein E (1972) Mineral nutrition of plants: principles and perspectives. Wiley, New York

    Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664. doi:10.1146/annurev.arplant.50.1.641

    Article  CAS  PubMed  Google Scholar 

  • Evans RD, Bloom AJ, Sukrapanna SS, Ehleringer JR (1996) Nitrogen isotope composition of tomato (Lycopersicon esculentum Mill. cv. T-5) grown under ammonium or nitrate nutrition. Plant Cell Environ 19:1317–1323. doi:10.1111/j.1365-3040.1996.tb00010.x

    Article  Google Scholar 

  • Felix JD, Elliot EM (2014) Isotopic composition of pasively collected nitrogen dioxide emissions: vehicle, soil and livestock source signatures. Atmos Environ 92:359–366

    Article  CAS  Google Scholar 

  • Felix JD, Elliot EM, Shaw SL (2012) Nitrogen isotopic composition of coal-fired power plant NO x : influence of emission controls and implications for global emission inventories. Environ Sci Technol 46:3528–3535

    Article  CAS  PubMed  Google Scholar 

  • Felix JD, Elliot EM, Gish TJ, McConnell LL, Shaw SL (2013) Characterizing the isotopic composition of atmospheric ammonia emission sources using pasive samplers and a combined oxidation-bacterial denitrifier approach. Rapid Commun Mass Spectrom 27:2239–2246

    Article  PubMed  Google Scholar 

  • Felix JD, Elliot EM, Gish TJ, Maghirang R, Cambal L, Clougherty J (2014) Examining the transport of ammonia emissions across landscapes using nitrogen isotope ratios. Atmos Environ 95:563–570

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland C, Green P, Holland E, Karl DM, Michaels AF, Porter JH, Townsend A, Vörösmarty C (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. doi:10.1007/s10533-004-0370-0

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Sci 320:889–892. doi:10.1126/science.1136674

    Article  CAS  Google Scholar 

  • García-Cruz J, Sánches LM, Jimenéz R, Solano R (2003) Flora Del Bajío y regiones adyacentes, Orchidaceae, tribu Epidendraeae, Herbario AMO, Fascículo 119, Mexico City

  • Gudiño W, Ávila-Díaz I, Oyama K, de la Barrera E (2015) High-temperature tolerance by the endangered Mexican Mayflower orchid Laelia speciosa. Trop Conserv Sci 8:983–991

    Article  Google Scholar 

  • Halbinger F, Soto-Arenas MA (1997) Laelias of México. ORQUIDEA (Mex.) Mexico city

  • Heaton THE (1990) 15N/14N ratios of NOx from vehicle engines and coal-fired power stations. Tellus B 42:304–307. doi:10.1034/j.1600-0889.1990.00007.x-i1

    Google Scholar 

  • Heaton THE, Wynn P, Tye AM (2004) Low 15N/14N ratios for nitrate in snow in the High Arctic (79°N). Atmos Environ 38:5611–5621

    Article  CAS  Google Scholar 

  • Hew CS, Ng CKY (1996) Changes in mineral and carbohydrate content in pseudobulbs of the C3 epiphytic orchid hybrid Oncidium Goldiana at different growth stages. Lindleyana 1:125–134

    Google Scholar 

  • Hietz P, Wanek W, Popp M (1999) Stable isotopic composition of carbon and nitrogen and nitrogen content in vascular epiphytes along an altitudinal transect. Plant Cell Environ 22:1435–1443. doi:10.1046/j.1365-3040.1999.00502.x

    Article  Google Scholar 

  • Hietz P, Wanek W, Wania R, Nadkarni N (2002) Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphyte nutrition. Oecologia 131:350–355. doi:10.1007/s00442-002-0896-6

    Article  PubMed  Google Scholar 

  • Hietz P, Turner BL, Wanek W, Richter A, Nock CA, Wright SJ (2011) Long-term change in the nitrogen cycle of tropical forests. Science 334:664–666. doi:10.1126/science.1211979

    Article  CAS  PubMed  Google Scholar 

  • Hoering T (1957) The isotopic composition of the ammonia and the nitrate ion in rain. Geochim Cosmochim Ac 12:97–102

    Article  CAS  Google Scholar 

  • Instituto Nacional de Estadística y Geografía (2013) Numero de habitantes. http://cuentame.inegi.org.mx/monografias/informacion/mich/poblacion/default.aspx?tema=me&e=16. Accessed 10 June 2013

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379. doi:10.1890/06-2057.1

    Article  PubMed  Google Scholar 

  • Li D, Wang X (2008) Nitrogen isotopic signature of soil-released nitric oxide (NO) after fertilizer application. Atmos Environ 42:4747–4754

    Article  CAS  Google Scholar 

  • Liu XY, Xiao HY, Liu CQ, Li YY, Xiao HW (2007) δ13C and δ15N of moss Haplocladium microphyllum (Hedw.) Broth. for indicating growing environment variation and canopy retention on atmospheric nitrogen deposition. Atmos Environ 41:4897–4907. doi:10.1016/j.atmosenv.2007.02.004

    Article  CAS  Google Scholar 

  • Liu XY, Xiao HY, Liu CQ, Li YY, Xiao HW (2008) Tissue N content and 15N natural abundance in epilithic mosses for indicating atmospheric N deposition in the Guiyang area, SW China. Appl Geochem 23:2708–2715. doi:10.1016/j.apgeochem.2008.06.002

    Article  CAS  Google Scholar 

  • Liu XY, Koba K, Liu CQ, Li XD, Yoh M (2012) Pitfalls and new mechanisms in moss isotope biomonitoring of atmospheric nitrogen deposition. Environ Sci Technol 46:12557–12566. doi:10.1021/es300779h

    Article  CAS  PubMed  Google Scholar 

  • Mangosá TJ, Berger RG (1997) Determination of major chlorophyll degradation products. Eur Food Res Technol 204:345–350

    Google Scholar 

  • Mardegan SF, Nardoto GB, Higuchi N, Reinert F, Martinelli LA (2011) Variation in nitrogen use strategies and photosynthetic pathways among vascular epiphytes in the Brazilian Central Amazon. Rev Bras Botânica 34:21–30. doi:10.1590/S0100-84042011000100003

    Article  Google Scholar 

  • Mills HA, Jones JB (1996) Plant analysis handbook II: a practical sampling, preparation, analysis, and interpretation guide. Micro-Macro Publishing, Incorporated, Athens

    Google Scholar 

  • Mondragón D, Valverde T, Hernández-Apolinar M (2015) Population ecology of epiphytic angiosperms: a review. Trop Ecol 56:01–39

    Google Scholar 

  • Moore H (1977) The isotopic composition of ammonia, nitrogen dioxide and nitrate in the atmosphere. Atmos Environ 11:1239–1243. doi:10.1016/0004-6981(77)90102-0

    Article  CAS  Google Scholar 

  • Nakaji T, Fukami M, Dokiya Y, Izuta T (2001) Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees 15:453–461. doi:10.1007/s00468-001-0130-x

    CAS  Google Scholar 

  • Ng CKY, Hew CS (2000) Orchid pseudobulbs `false’ bulbs with a genuine importance in orchid growth and survival! Sci Hortic (Amsterdam) 83:165–172. doi:10.1016/S0304-4238(99)00084-9

    Article  Google Scholar 

  • Pearson J, Wells DM, Seller KJ, Bennett A, Soares A, Woodall Ingrouille MJ (2000) Traffic exposure increases natural 15N and heavy metal concentrations in mosses. New Phytol 147:317–326. doi:10.1046/j.1469-8137.2000.00702.x

    Article  CAS  Google Scholar 

  • Phoenix GK, Hicks WK, Cinderby S, Kuylenstierna CI, Stock WD, Dentener FJ, Giller KE, Austin AT, Lefroy DB, Gimeno BS, Ashmore MR, Ineson P (2006) Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Glob Chang Biol 12:470–476. doi:10.1111/j.1365-2486.2006.01104.x

    Article  Google Scholar 

  • Power SA, Collins CM (2010) Use of Calluna vulgaris to detect signals of nitrogen deposition across an urban–rural gradient. Atmos Environ 44:1772–1780. doi:10.1016/j.atmosenv.2010.01.034

    Article  CAS  Google Scholar 

  • Redling K, Elliot E, Bain D, Sherwell J (2013) Highway contributions to reactive nitrogen deposition: tracing the fate of vehicular NOx using stable isotopes and plant biomonitors. Biochemistry 116:261–274

    CAS  Google Scholar 

  • Rehfeldt GE, Crookston NL, Sáenz-Romero C, Campbell EM (2012) North American vegetation model for land-use planning in a changing climate: a solution to large classification problems. Ecol Appl 22:119–141. doi:10.1890/11-0495.1

    Article  PubMed  Google Scholar 

  • Sánchez E, Soto J, García PC, López-Lefebre L, Rivero R, Ruíz JM, Romero L (2000) Phenolic compounds and oxidative metabolism in green vean plants under nitrogen toxicity. Aust J Plant Physiol 27:973–978

    Google Scholar 

  • Secretaría del Medio Ambiente del Gobierno del Distrito Federal (2012) Calidad del aire en la Ciudad de México Informe 2011. Gobierno del Distrito Federal, México City

    Google Scholar 

  • SEMARNAT (2010) Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-especies nativas de México de flora y fauna Silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-lista de especies en riesgo. Mexico City

  • Servicio Meteorológico Nacional (2012) Normales meteorológicas 1971–2000. http://smn.cna.gob.mx/index.php?option=com_content&view=article&id=190&tmpl=component. Accessed 6 June 2012

  • Shangguan ZP, Shao MA, Dyckmans J (2000) Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat. Environ Exp Bot 44:141–149. doi:10.1016/S0098-8472(00)00064-2

    Article  CAS  PubMed  Google Scholar 

  • Soto-Arenas M (1994) Population studies in Mexican orchids. In: Pridgeon AM (ed), Proceedings of the 14th World Orchid Conference HMSO Publisher, Glasgow

  • Soto-Arenas MA, Solano-Gómez AR (2007) Ficha técnica de Laelia speciosa. In: Soto-Arenas MA (ed) Información actualizada sobre las especies de orquídeas del PROY-NOM-059-ECOL-2000. Instituto Chinoin A.C., Herbario de la Asociación Mexicana de Orquideología A.C. Bases de datos SNIB-CONABIO. Proyecto No. W029 CONABIO, Mexico City

  • Stewart GR, Schmidt S, Handley LL, Turnbull MH, Erskine PD, Joly CA (1995) 15N natural abundance of vascular rainforest epiphytes: implications for nitrogen source and acquisition. Plant Cell Environ 18:85–90. doi:10.1111/j.1365-3040.1995.tb00547.x

    Article  Google Scholar 

  • Stewart G, Aidar M, Joly C, Schmidt S (2002) Impact of point source pollution on nitrogen isotope signatures (δ15N) of vegetation in SE Brazil. Oecologia 131:468–472. doi:10.1007/s00442-002-0906-8

    Article  PubMed  Google Scholar 

  • Sub-sistema del Inventario Nacional de Emisiones a la Atmósfera de México (2016) Inventario Nacional de Emisiones 2008. http://sinea.semarnat.gob.mx/. Accessed 31 March 2016

  • Van der Sleen P, Vlam M, Groenendijk P, Anten NPR, Bongers F, Bunyavejchewin S, Hietz P, Pons TL, Zuidema PA (2015) 15N in tree rings as a bio-indicator of changing nitrogen cycling in tropical forests: an evaluation at three sites using two sampling methods. Front Plant Sci. doi:10.3389/fpls.2015.00229

    PubMed  PubMed Central  Google Scholar 

  • Villers-Ruiz L, Trejo-Vázquez I (2000) El cambio climático y la vegetación en México. In: García C (ed) México: una visión hacia el siglo XXI. El cambio climático en México, Instituto Nacional de Ecología, Universidad Nacional Autónoma de México, US Country Studies Program, Mexico City

  • Wania R, Hietz P, Wanek W (2002) Natural 15N abundance of epiphytes depends on the position within the forest canopy: source signals and isotope fractionation. Plant Cell Environ 25:581–589. doi:10.1046/j.1365-3040.2002.00836.x

    Article  CAS  Google Scholar 

  • West JB, Bowen GJ, Cerling TE, Ehleringer JR (2006) Stable isotopes as one of nature’s ecological recorders. Trends Ecol Evol 21:408–414. doi:10.1016/j.tree.2006.04.002

    Article  PubMed  Google Scholar 

  • Widory D (2007) Nitrogen isotopes: tracers of origin and processes affecting PM10 in the atmosphere of Paris. Atmos Environ 41:2382–2390. doi:10.1016/j.atmosenv.2006.11.009

    Article  CAS  Google Scholar 

  • Wilson D, Stock WD, Hedderson T (2009) Historical nitrogen content of bryophyte tissue as an indicator of increased nitrogen deposition in the Cape Metropolitan Area, South Africa. Environ Pollut 157:938–945. doi:10.1016/j.envpol.2008.10.021

    Article  CAS  PubMed  Google Scholar 

  • Wortman E, Tomaszewski T, Waldner P, Schleppi P, Thimonier A, Eugster W, Buchmann N, Sievering H (2012) Atmospheric nitrogen deposition and canopy retention influences on photosynthetic performance at two high nitrogen deposition Swiss forests. Tellus B 64:17216. doi:10.3402/tellusb.v64i0.17216

    Article  CAS  Google Scholar 

  • Xiao HY, Liu CQ (2002) Sources of nitrogen and sulfur in wet deposition at Guiyang, Southwest China. Atmos Environ 36:5121–5130

    Article  CAS  Google Scholar 

  • Xiao HY, Tang CG, Xiao HW, Liu XY, Liu CQ (2010) Mosses indicating atmospheric nitrogen deposition and sources in the Yangtze River drainage basin China. J Geophys Res 115:D14301

    Article  Google Scholar 

  • Xiao HW, Xiao HY, Long AM, Wang YL (2012) Who controls the monthly variations of NH4 + nitrogen isotope composition in precipitation? Atmos Environ 54:201–206

    Article  CAS  Google Scholar 

  • Zechmeister HG, Richter A, Smidt S, Roder I, Maringer S, Richter A, Wanek W (2008) Total nitrogen content and δ15N signatures in moss tissue: indicative value for nitrogen deposition patterns and source allocation on a nationwide scale. Environ Sci Technol 42:8661–8667. doi:10.1021/es801865d

    Article  CAS  PubMed  Google Scholar 

  • Zotz G, Bogusch W, Hietz P, Ketteler N (2010) Growth of epiphytic bromeliads in a changing world: the effects of CO2, water and nutrient supply. Acta Oecol 36:659–665. doi:10.1016/j.actao.2010.10.003

    Article  Google Scholar 

Download references

Acknowledgments

We thank institutional funds from Instituto de Investigationes en Ecosistemas y Sustentabilidad and the Dirección General del Personal Académico (PAPIIT IN205616), Universidad Nacional Autónoma de México. EADA held a generous graduate research fellowship from Consejo Nacional de Ciencia y Tecnología, México. EADA also thanks Dr. D.G. Williams at the University of Wyoming for guidance during the elemental and isotopic analyses of the samples. Ms. MD Lugo and Mr. J. Martínez Cruz maintained the plants that Dr. I. Avila Díaz rescued in 2004, which were utilized in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erick de la Barrera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Álvarez, E.A., Reyes-García, C. & de la Barrera, E. A δ15N assessment of nitrogen deposition for the endangered epiphytic orchid Laelia speciosa from a city and an oak forest in Mexico. J Plant Res 129, 863–872 (2016). https://doi.org/10.1007/s10265-016-0843-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-016-0843-y

Keywords

Navigation