Journal of Plant Research

, Volume 129, Issue 5, pp 863–872 | Cite as

A δ15N assessment of nitrogen deposition for the endangered epiphytic orchid Laelia speciosa from a city and an oak forest in Mexico

  • Edison A. Díaz-Álvarez
  • Casandra Reyes-García
  • Erick de la Barrera
Regular Paper

Abstract

Atmospheric nitrogen deposition poses a major threat to global biodiversity. Tropical epiphytic plants are especially at risk given their reliance on atmospheric sources of nutrients. The leaf, pseudobulb, and root carbon and nitrogen content, C:N ratio, as well as the nitrogen isotopic composition were studied for individuals of Laelia speciosa from a city and from an oak forest in Mexico. The nitrogen content of leaves was similar between the city and the oak forest, reaching 1.3 ± 0.2 % (dry mass). The δ15N of leaves, pseudobulbs, and roots reached 5.6 ± 0.2 ‰ in the city, values found in sites exposed to industrial and vehicular activities. The δ15N for plant from the oak forest amounted to –3.1 ± 0.3 ‰, which is similar to values measured from sites with low industrial activities. Some orchids such as Laelia speciosa produce a single pseudobulb per year, i.e., a water and nutrient storage organ, so the interannual nitrogen deposition was studied by considering the ten most recent pseudobulbs for plants from either site formed between 2003 and 2012. The C:N ratio of the ten most recent pseudobulbs from the oak forest, as well as that of the pseudobulbs formed before 2010 for plants in the city were indistinguishable from each other, averaging 132.4 ± 6.5, while it was lower for the two most recent pseudobulbs in the city. The δ15N values of pseudobulbs from the oak forest averaged ‒4.4 ± 0.1 ‰ for the entire series. The δ15N ranged from 0.1 ± 1.6 ‰ for the oldest pseudobulb to 4.7 ± 0.2 ‰ for the pseudobulb formed in the city from 2008 onwards. Isotopic analysis and the C:N ratio for L. speciosa revealed that rates of nitrogen deposition were higher in the city than in the forest. The δ15N values of series of pseudobulbs showed that it is possible to track nitrogen deposition over multiple years.

Keywords

Atmospheric pollution Conservation physiology Global change Industrial activities Neo-Volcanic axis 

References

  1. Ammann M, Siegwolf R, Pichlmayer F, Suter M, Saurer M, Brunold C (1999) Estimating the uptake of traffic-derived NO2 from 15N abundance in Norway spruce needles. Oecologia 118:124–131CrossRefGoogle Scholar
  2. Arciga-Pedraza A (2010) Evaluación del potencial bioindicador de la depositación de nitrógeno de dos musgos comunes. Dissertation, Universidad Michoacana de San Nicolás de HidalgoGoogle Scholar
  3. Austin AT, Bustamante MMC, Nardoto GB, Mitre SK, Pérez T, Ometto JPHB, Ascarrunz NL, Forti MC, Longo K, Gavito ME, Enrich-Prast A, Martinelli LA (2013) Latin America’s nitrogen challenge. Science 340:149CrossRefPubMedGoogle Scholar
  4. Bauer G, Bazzaz F, Minocha R, Long S, Magill A, Aber J, Berntson GM (2004) Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.) stand in the NE United States. For Ecol Manage 196:173–186. doi:10.1016/j.foreco.2004.03.032 CrossRefGoogle Scholar
  5. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59. doi:10.1890/08-1140.1 CrossRefPubMedGoogle Scholar
  6. Bragazza L, Limpens J, Gerdol R, Grosvernier P, Hájek M, Hájek T, Hajkova P, Hansen P, Iacumin P, Kutnar L, Rydin H, Tahvanainen T (2005) Nitrogen concentration and delta15N signature of ombrotrophic Sphagnum mosses at different N deposition levels in Europe. Glob Chang Biol 11:106–114. doi:10.1111/j.1365-2486.2004.00886.x CrossRefGoogle Scholar
  7. Britto T, Kronzucker H (2002) NH+4 toxicity in higher plants: a critical review. J Plant Physiol 159:567–584. doi:10.1078/0176-1617-0774 CrossRefGoogle Scholar
  8. Brown KR, Thompson WA, Camm EL, Hawkins BJ, Guy RD (1996) Effects of N addition rates on the productivity of Picea sitchensis, Thuja plicata, and Tsuga heterophylla seedlings. Trees 10:198–205. doi:10.1007/BF02340772 CrossRefGoogle Scholar
  9. Cardelús CL, Mack MC (2010) The nutrient status of epiphytes and their host trees along an elevational gradient in Costa Rica. Plant Ecol 207:25–37CrossRefGoogle Scholar
  10. Cárdenas MA, Delgadillo C (2009) Musgos del valle de México. Cuadernos del Instituto de Biología 40. Universidad Nacional Autónoma de México, Mexico CityGoogle Scholar
  11. Chapman HD (1965) Diagnostic criteria for plants and soils. University of California Division of Agricultural Sciences, BerkelyGoogle Scholar
  12. Cufar K, Grabner M, Morgós A, Martınez del Castillo E, Merela M, de Luis M (2014) Common climatic signals affecting oak tree-ring growth in SE Central Europe. Trees 28:1267–1277. doi:10.1007/s00468-013-0972-z CrossRefGoogle Scholar
  13. Davidson OW (1960) Principles of orchid nutrition: proceedings of the Third World Orchid Conference. Staples Printers Ltd, RochesterGoogle Scholar
  14. Delwiche CC, Steyn PL (1970) Nitrogen isotope fractionation in soils and microbial reactions. Environ Sci Technol 4:929–935. doi:10.1021/es60046a004 CrossRefGoogle Scholar
  15. Díaz-Álvarez EA, Lindig-Cisneros R, de la Barrera E (2015) Responses to simulated nitrogen deposition by the neotropical epiphytic orchid Laelia speciosa. PeerJ 3:e1021. doi:10.7717/peerj.1021 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Drennan (2009) Temperature influences on plant species of arid and semi-arid regions with emphasis on CAM succulents. In: de la Barrera E, Smith WK (eds) Perspectives in biophysical plant ecophysiology: a tribute to Park S. Nobel. Universidad Nacional Autónoma de México, Mexico CityGoogle Scholar
  17. Dressler RL (1981) The orchids: natural history and classification. Syst Bot 6:308–311CrossRefGoogle Scholar
  18. Ehleringer JR, Osmond BO (1989) Stable isotopes. In: Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW (eds) Plant physiological ecology field methods and instrumentation. Chapman & Hall, LondonGoogle Scholar
  19. Elliot EM, Kendal C, Boyer EW, Burns DA, Lear G, Golden HE, Harlin K, Bytnerowicz A, Butler TJ, Glatz R (2009) Dual nitrate isotopes in actively and pasively collected dry deposition: utility for partitioning NOx sources contributing to landscape nitrogen deposition. J Geophys Res 114:G04020Google Scholar
  20. English NB, Dettman DL, Sandquist DR, Williams DG (2007) Past climate changes and ecophysiological responses recorded in the isotope ratios of saguaro cactus spines. Oecologia 154:247–258. doi:10.1007/s00442-007-0832-x CrossRefPubMedGoogle Scholar
  21. English NB, Dettman DL, Williams DG (2010) A 26-year stable isotope record of humidity and El Niño-enhanced precipitation in the spines of saguaro cactus, Carnegiea gigantea. Palaeogeogr Palaeoclimatol Palaeoecol 293:108–119. doi:10.1016/j.palaeo.2010.05.005 CrossRefGoogle Scholar
  22. Epstein E (1972) Mineral nutrition of plants: principles and perspectives. Wiley, New YorkGoogle Scholar
  23. Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664. doi:10.1146/annurev.arplant.50.1.641 CrossRefPubMedGoogle Scholar
  24. Evans RD, Bloom AJ, Sukrapanna SS, Ehleringer JR (1996) Nitrogen isotope composition of tomato (Lycopersicon esculentum Mill. cv. T-5) grown under ammonium or nitrate nutrition. Plant Cell Environ 19:1317–1323. doi:10.1111/j.1365-3040.1996.tb00010.x CrossRefGoogle Scholar
  25. Felix JD, Elliot EM (2014) Isotopic composition of pasively collected nitrogen dioxide emissions: vehicle, soil and livestock source signatures. Atmos Environ 92:359–366CrossRefGoogle Scholar
  26. Felix JD, Elliot EM, Shaw SL (2012) Nitrogen isotopic composition of coal-fired power plant NOx: influence of emission controls and implications for global emission inventories. Environ Sci Technol 46:3528–3535CrossRefPubMedGoogle Scholar
  27. Felix JD, Elliot EM, Gish TJ, McConnell LL, Shaw SL (2013) Characterizing the isotopic composition of atmospheric ammonia emission sources using pasive samplers and a combined oxidation-bacterial denitrifier approach. Rapid Commun Mass Spectrom 27:2239–2246CrossRefPubMedGoogle Scholar
  28. Felix JD, Elliot EM, Gish TJ, Maghirang R, Cambal L, Clougherty J (2014) Examining the transport of ammonia emissions across landscapes using nitrogen isotope ratios. Atmos Environ 95:563–570CrossRefGoogle Scholar
  29. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland C, Green P, Holland E, Karl DM, Michaels AF, Porter JH, Townsend A, Vörösmarty C (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. doi:10.1007/s10533-004-0370-0 CrossRefGoogle Scholar
  30. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Sci 320:889–892. doi:10.1126/science.1136674 CrossRefGoogle Scholar
  31. García-Cruz J, Sánches LM, Jimenéz R, Solano R (2003) Flora Del Bajío y regiones adyacentes, Orchidaceae, tribu Epidendraeae, Herbario AMO, Fascículo 119, Mexico CityGoogle Scholar
  32. Gudiño W, Ávila-Díaz I, Oyama K, de la Barrera E (2015) High-temperature tolerance by the endangered Mexican Mayflower orchid Laelia speciosa. Trop Conserv Sci 8:983–991Google Scholar
  33. Halbinger F, Soto-Arenas MA (1997) Laelias of México. ORQUIDEA (Mex.) Mexico cityGoogle Scholar
  34. Heaton THE (1990) 15N/14N ratios of NOx from vehicle engines and coal-fired power stations. Tellus B 42:304–307. doi:10.1034/j.1600-0889.1990.00007.x-i1 Google Scholar
  35. Heaton THE, Wynn P, Tye AM (2004) Low 15N/14N ratios for nitrate in snow in the High Arctic (79°N). Atmos Environ 38:5611–5621CrossRefGoogle Scholar
  36. Hew CS, Ng CKY (1996) Changes in mineral and carbohydrate content in pseudobulbs of the C3 epiphytic orchid hybrid Oncidium Goldiana at different growth stages. Lindleyana 1:125–134Google Scholar
  37. Hietz P, Wanek W, Popp M (1999) Stable isotopic composition of carbon and nitrogen and nitrogen content in vascular epiphytes along an altitudinal transect. Plant Cell Environ 22:1435–1443. doi:10.1046/j.1365-3040.1999.00502.x CrossRefGoogle Scholar
  38. Hietz P, Wanek W, Wania R, Nadkarni N (2002) Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphyte nutrition. Oecologia 131:350–355. doi:10.1007/s00442-002-0896-6 CrossRefGoogle Scholar
  39. Hietz P, Turner BL, Wanek W, Richter A, Nock CA, Wright SJ (2011) Long-term change in the nitrogen cycle of tropical forests. Science 334:664–666. doi:10.1126/science.1211979 CrossRefPubMedGoogle Scholar
  40. Hoering T (1957) The isotopic composition of the ammonia and the nitrate ion in rain. Geochim Cosmochim Ac 12:97–102CrossRefGoogle Scholar
  41. Instituto Nacional de Estadística y Geografía (2013) Numero de habitantes. http://cuentame.inegi.org.mx/monografias/informacion/mich/poblacion/default.aspx?tema=me&e=16. Accessed 10 June 2013
  42. LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379. doi:10.1890/06-2057.1 CrossRefPubMedGoogle Scholar
  43. Li D, Wang X (2008) Nitrogen isotopic signature of soil-released nitric oxide (NO) after fertilizer application. Atmos Environ 42:4747–4754CrossRefGoogle Scholar
  44. Liu XY, Xiao HY, Liu CQ, Li YY, Xiao HW (2007) δ13C and δ15N of moss Haplocladium microphyllum (Hedw.) Broth. for indicating growing environment variation and canopy retention on atmospheric nitrogen deposition. Atmos Environ 41:4897–4907. doi:10.1016/j.atmosenv.2007.02.004 CrossRefGoogle Scholar
  45. Liu XY, Xiao HY, Liu CQ, Li YY, Xiao HW (2008) Tissue N content and 15N natural abundance in epilithic mosses for indicating atmospheric N deposition in the Guiyang area, SW China. Appl Geochem 23:2708–2715. doi:10.1016/j.apgeochem.2008.06.002 CrossRefGoogle Scholar
  46. Liu XY, Koba K, Liu CQ, Li XD, Yoh M (2012) Pitfalls and new mechanisms in moss isotope biomonitoring of atmospheric nitrogen deposition. Environ Sci Technol 46:12557–12566. doi:10.1021/es300779h CrossRefPubMedGoogle Scholar
  47. Mangosá TJ, Berger RG (1997) Determination of major chlorophyll degradation products. Eur Food Res Technol 204:345–350Google Scholar
  48. Mardegan SF, Nardoto GB, Higuchi N, Reinert F, Martinelli LA (2011) Variation in nitrogen use strategies and photosynthetic pathways among vascular epiphytes in the Brazilian Central Amazon. Rev Bras Botânica 34:21–30. doi:10.1590/S0100-84042011000100003 CrossRefGoogle Scholar
  49. Mills HA, Jones JB (1996) Plant analysis handbook II: a practical sampling, preparation, analysis, and interpretation guide. Micro-Macro Publishing, Incorporated, AthensGoogle Scholar
  50. Mondragón D, Valverde T, Hernández-Apolinar M (2015) Population ecology of epiphytic angiosperms: a review. Trop Ecol 56:01–39Google Scholar
  51. Moore H (1977) The isotopic composition of ammonia, nitrogen dioxide and nitrate in the atmosphere. Atmos Environ 11:1239–1243. doi:10.1016/0004-6981(77)90102-0 CrossRefGoogle Scholar
  52. Nakaji T, Fukami M, Dokiya Y, Izuta T (2001) Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees 15:453–461. doi:10.1007/s00468-001-0130-x Google Scholar
  53. Ng CKY, Hew CS (2000) Orchid pseudobulbs `false’ bulbs with a genuine importance in orchid growth and survival! Sci Hortic (Amsterdam) 83:165–172. doi:10.1016/S0304-4238(99)00084-9 CrossRefGoogle Scholar
  54. Pearson J, Wells DM, Seller KJ, Bennett A, Soares A, Woodall Ingrouille MJ (2000) Traffic exposure increases natural 15N and heavy metal concentrations in mosses. New Phytol 147:317–326. doi:10.1046/j.1469-8137.2000.00702.x CrossRefGoogle Scholar
  55. Phoenix GK, Hicks WK, Cinderby S, Kuylenstierna CI, Stock WD, Dentener FJ, Giller KE, Austin AT, Lefroy DB, Gimeno BS, Ashmore MR, Ineson P (2006) Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Glob Chang Biol 12:470–476. doi:10.1111/j.1365-2486.2006.01104.x CrossRefGoogle Scholar
  56. Power SA, Collins CM (2010) Use of Calluna vulgaris to detect signals of nitrogen deposition across an urban–rural gradient. Atmos Environ 44:1772–1780. doi:10.1016/j.atmosenv.2010.01.034 CrossRefGoogle Scholar
  57. Redling K, Elliot E, Bain D, Sherwell J (2013) Highway contributions to reactive nitrogen deposition: tracing the fate of vehicular NOx using stable isotopes and plant biomonitors. Biochemistry 116:261–274Google Scholar
  58. Rehfeldt GE, Crookston NL, Sáenz-Romero C, Campbell EM (2012) North American vegetation model for land-use planning in a changing climate: a solution to large classification problems. Ecol Appl 22:119–141. doi:10.1890/11-0495.1 CrossRefPubMedGoogle Scholar
  59. Sánchez E, Soto J, García PC, López-Lefebre L, Rivero R, Ruíz JM, Romero L (2000) Phenolic compounds and oxidative metabolism in green vean plants under nitrogen toxicity. Aust J Plant Physiol 27:973–978Google Scholar
  60. Secretaría del Medio Ambiente del Gobierno del Distrito Federal (2012) Calidad del aire en la Ciudad de México Informe 2011. Gobierno del Distrito Federal, México CityGoogle Scholar
  61. SEMARNAT (2010) Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-especies nativas de México de flora y fauna Silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-lista de especies en riesgo. Mexico CityGoogle Scholar
  62. Servicio Meteorológico Nacional (2012) Normales meteorológicas 1971–2000. http://smn.cna.gob.mx/index.php?option=com_content&view=article&id=190&tmpl=component. Accessed 6 June 2012
  63. Shangguan ZP, Shao MA, Dyckmans J (2000) Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat. Environ Exp Bot 44:141–149. doi:10.1016/S0098-8472(00)00064-2 CrossRefPubMedGoogle Scholar
  64. Soto-Arenas M (1994) Population studies in Mexican orchids. In: Pridgeon AM (ed), Proceedings of the 14th World Orchid Conference HMSO Publisher, GlasgowGoogle Scholar
  65. Soto-Arenas MA, Solano-Gómez AR (2007) Ficha técnica de Laelia speciosa. In: Soto-Arenas MA (ed) Información actualizada sobre las especies de orquídeas del PROY-NOM-059-ECOL-2000. Instituto Chinoin A.C., Herbario de la Asociación Mexicana de Orquideología A.C. Bases de datos SNIB-CONABIO. Proyecto No. W029 CONABIO, Mexico CityGoogle Scholar
  66. Stewart GR, Schmidt S, Handley LL, Turnbull MH, Erskine PD, Joly CA (1995) 15N natural abundance of vascular rainforest epiphytes: implications for nitrogen source and acquisition. Plant Cell Environ 18:85–90. doi:10.1111/j.1365-3040.1995.tb00547.x CrossRefGoogle Scholar
  67. Stewart G, Aidar M, Joly C, Schmidt S (2002) Impact of point source pollution on nitrogen isotope signatures (δ15N) of vegetation in SE Brazil. Oecologia 131:468–472. doi:10.1007/s00442-002-0906-8 CrossRefGoogle Scholar
  68. Sub-sistema del Inventario Nacional de Emisiones a la Atmósfera de México (2016) Inventario Nacional de Emisiones 2008. http://sinea.semarnat.gob.mx/. Accessed 31 March 2016
  69. Van der Sleen P, Vlam M, Groenendijk P, Anten NPR, Bongers F, Bunyavejchewin S, Hietz P, Pons TL, Zuidema PA (2015) 15N in tree rings as a bio-indicator of changing nitrogen cycling in tropical forests: an evaluation at three sites using two sampling methods. Front Plant Sci. doi:10.3389/fpls.2015.00229 PubMedPubMedCentralGoogle Scholar
  70. Villers-Ruiz L, Trejo-Vázquez I (2000) El cambio climático y la vegetación en México. In: García C (ed) México: una visión hacia el siglo XXI. El cambio climático en México, Instituto Nacional de Ecología, Universidad Nacional Autónoma de México, US Country Studies Program, Mexico CityGoogle Scholar
  71. Wania R, Hietz P, Wanek W (2002) Natural 15N abundance of epiphytes depends on the position within the forest canopy: source signals and isotope fractionation. Plant Cell Environ 25:581–589. doi:10.1046/j.1365-3040.2002.00836.x CrossRefGoogle Scholar
  72. West JB, Bowen GJ, Cerling TE, Ehleringer JR (2006) Stable isotopes as one of nature’s ecological recorders. Trends Ecol Evol 21:408–414. doi:10.1016/j.tree.2006.04.002 CrossRefPubMedGoogle Scholar
  73. Widory D (2007) Nitrogen isotopes: tracers of origin and processes affecting PM10 in the atmosphere of Paris. Atmos Environ 41:2382–2390. doi:10.1016/j.atmosenv.2006.11.009 CrossRefGoogle Scholar
  74. Wilson D, Stock WD, Hedderson T (2009) Historical nitrogen content of bryophyte tissue as an indicator of increased nitrogen deposition in the Cape Metropolitan Area, South Africa. Environ Pollut 157:938–945. doi:10.1016/j.envpol.2008.10.021 CrossRefPubMedGoogle Scholar
  75. Wortman E, Tomaszewski T, Waldner P, Schleppi P, Thimonier A, Eugster W, Buchmann N, Sievering H (2012) Atmospheric nitrogen deposition and canopy retention influences on photosynthetic performance at two high nitrogen deposition Swiss forests. Tellus B 64:17216. doi:10.3402/tellusb.v64i0.17216 CrossRefGoogle Scholar
  76. Xiao HY, Liu CQ (2002) Sources of nitrogen and sulfur in wet deposition at Guiyang, Southwest China. Atmos Environ 36:5121–5130CrossRefGoogle Scholar
  77. Xiao HY, Tang CG, Xiao HW, Liu XY, Liu CQ (2010) Mosses indicating atmospheric nitrogen deposition and sources in the Yangtze River drainage basin China. J Geophys Res 115:D14301CrossRefGoogle Scholar
  78. Xiao HW, Xiao HY, Long AM, Wang YL (2012) Who controls the monthly variations of NH4 + nitrogen isotope composition in precipitation? Atmos Environ 54:201–206CrossRefGoogle Scholar
  79. Zechmeister HG, Richter A, Smidt S, Roder I, Maringer S, Richter A, Wanek W (2008) Total nitrogen content and δ15N signatures in moss tissue: indicative value for nitrogen deposition patterns and source allocation on a nationwide scale. Environ Sci Technol 42:8661–8667. doi:10.1021/es801865d CrossRefPubMedGoogle Scholar
  80. Zotz G, Bogusch W, Hietz P, Ketteler N (2010) Growth of epiphytic bromeliads in a changing world: the effects of CO2, water and nutrient supply. Acta Oecol 36:659–665. doi:10.1016/j.actao.2010.10.003 CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Edison A. Díaz-Álvarez
    • 1
    • 2
  • Casandra Reyes-García
    • 3
  • Erick de la Barrera
    • 2
  1. 1.Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de México, Ciudad UniversitariaMéxicoMexico
  2. 2.Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  3. 3.Centro de Investigación Científica de YucatánMéridaMexico

Personalised recommendations