Journal of Plant Research

, Volume 129, Issue 5, pp 899–907 | Cite as

A pqr2 mutant encodes a defective polyamine transporter and is negatively affected by ABA for paraquat resistance in Arabidopsis thaliana

  • Shuchao Dong
  • Huizhen Hu
  • Youmei Wang
  • Zhengdan Xu
  • Yi Zha
  • Xiwen Cai
  • Liangcai Peng
  • Shengqiu Feng
Regular Paper

Abstract

Despite the paraquat-resistant mutants that have been reported in plants, this study identified a novel A. thaliana mutant (pqr2) from an XVE inducible activation library based on its resistance to 2 μM paraquat. The pqr2 mutant exhibited a termination mutation in the exon of AT1G31830/PAR1/PQR2, encoded a polyamine uptake transporter AtPUT2/PAR1/PQR2. The PQR2 mutation could largely reduce superoxide accumulation and cell death in the pqr2 plants under paraquat treatment. Moreover, compared with wild type, the pqr2 mutant exhibited much reduced tolerance to putrescine, a classic polyamine compound, which confirmed that PQR2 encoded a defective polyamine transporter. Notably, co-treated with ABA and paraquat, both pqr2 mutant and wild type exhibited a lethal phenotype from seed germination, but the wild type like pqr2 mutant, could remain paraquat-resistance while co-treated with high dosage of Na2WO4, an ABA synthesis inhibitor. Gene expression analysis suggested that ABA signaling should widely regulate paraquat-responsive genes distinctively in wild type and pqr2 mutant. Hence, this study has for the first time reported about ABA negative effect on paraquat-resistance in A. thaliana, providing insight into the ABA signaling involved in the oxidative stress responses induced by paraquat in plants.

Keywords

Polyamine transporter Paraquat resistance ABA A. thaliana 

Supplementary material

10265_2016_819_MOESM1_ESM.tif (14.6 mb)
Supplementary material 1 (TIFF 14899 kb)
10265_2016_819_MOESM2_ESM.doc (36 kb)
Supplementary material 2 (DOC 35 kb)
10265_2016_819_MOESM3_ESM.doc (42 kb)
Supplementary material 3 (DOC 42 kb)
10265_2016_819_MOESM4_ESM.doc (46 kb)
Supplementary material 4 (DOC 46 kb)

References

  1. Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249CrossRefPubMedGoogle Scholar
  2. Babbs CF, Pham JA, Coolbaugh RC (1989) Lethal hydroxyl radical production in paraquat-treated plants. Plant Physiol 90:1267–1270CrossRefPubMedPubMedCentralGoogle Scholar
  3. Benavides MP, Gallego SM, Comba ME, Tomaro ML (2000) Relationship between polyamines and paraquat toxicity in sunflower leaf discs. Plant Growth Regul 31:215–224CrossRefGoogle Scholar
  4. Benina M, Ribeiro DM, Gechev TS, Mueller-Roeber B, Schippers JHM (2014) A cell type-specific view on the translation of mRNAs from ROS-responsive genes upon paraquat treatment of Arabidopsis thaliana leaves. Plant Cell Environ 38:349–363CrossRefPubMedGoogle Scholar
  5. Bors W, Langebartels C, Michel C, Sandermann H (1989) Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28:1589–1595CrossRefGoogle Scholar
  6. Bus JS, Gibson JE (1984) Paraquat: model for oxidant-initiated toxicity. Environ Health Perspect 55:37–46CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen RQ, Sun SL, Wang C, Li YS, Liang Y, An FY, Li C, Dong HL, Yang XH, Zhang J, Zuo JR (2009) The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Res 19:1377–1387CrossRefPubMedGoogle Scholar
  8. Childs AC, Mehta DJ, Gerner EW (2003) Polyamine-dependent gene expression. Cell Mol Life Sci 60:1394–1406CrossRefPubMedGoogle Scholar
  9. Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  10. Das KC, Misra HP (2004) Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines. Mol Cell Biochem 262:127–133CrossRefPubMedGoogle Scholar
  11. Davies KJ (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31CrossRefPubMedGoogle Scholar
  12. Ding HD, Zhang XH, Xu SC, Sun LL, Jiang MY, Zhang AY, Jin YG (2009) Induction of protection against paraquat-induced oxidative damage by abscisic acid in maize leaves is mediated through mitogen-activated protein kinase. J Integr Plant Biol 51:961–972CrossRefPubMedGoogle Scholar
  13. Dinis-Oliveira RJ, Duarte JA, Sánchez-Navarro A, Remião F, Bastos ML, Carvalho F (2008) Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment. Crit Rev Toxicol 38:13–71CrossRefPubMedGoogle Scholar
  14. DiTomaso JM, Hart JJ, Kochian LV (1993) Compartmentation analysis of paraquat fluxes in maize roots as a means of estimating the rate of vacuolar accumulation and translocation to shoots. Plant Physiol 102:467–472PubMedPubMedCentralGoogle Scholar
  15. Drolet G, Dumbroff EB, Legge RL, Thompson JE (1986) Radical scavenging properties of polyamines. Phytochemistry 25:367–371CrossRefGoogle Scholar
  16. Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446CrossRefPubMedGoogle Scholar
  17. Fujii T, Yokoyama E, Inoue K, Sakurai H (1990) The sites of electron donation of photosystem I to methyl viologen. Biochim Biophys Acta (BBA)–Bioener 1015:41–48CrossRefGoogle Scholar
  18. Fujita M, Shinozaki K (2014) Identification of polyamine transporters in plants: paraquat transport provides crucial clues. Plant Cell Physiol 55:855–861CrossRefPubMedGoogle Scholar
  19. Fujita M, Fujita Y, Iuchi S, Yamada K, Kobayashi Y, Urano K, Kobayashi M, Yamaguchi-Shinozaki K, Shinozki K (2012) Natural variation in a polyamine transporter determines paraquat tolerance in Arabidopsis. Proc Natl Acad Sci USA 109:6343–6347CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fukuda H (2000) Programmed cell death of tracheary elements as a paradigm in plants. Plant Mol Bio 44:245–253CrossRefGoogle Scholar
  21. Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33CrossRefPubMedPubMedCentralGoogle Scholar
  22. Guan L, Scandalios JG (1998) Two structurally similar maize cytosolic superoxide dismutase genes, Sod4 and Sod4A, respond differentially to abscisic acid and high osmoticum. Plant Physiol 117:217–224CrossRefPubMedPubMedCentralGoogle Scholar
  23. Guan LM, Zhao J, Scandalios JG (2000) Cis—elements and transfactors that regulate expression of themaize Catl antioxidant gene in response to ABA and osmotic stress: H202 is the likely intermediary signaling molecule for the response. Plant J 22:87–95CrossRefPubMedGoogle Scholar
  24. Han HJ, Peng RH, Zhu B, Fu XY, Zhao W, Shi B, Yao QH (2014) Gene expression profiles of Arabidopsis under the stress of methyl viologen: a microarray analysis. Mol Biol Rep 41:7089–7102CrossRefPubMedGoogle Scholar
  25. Hart JJ, Ditomaso JM, Linscott DL, Kochian LV (1992) Transport interactions between paraquat and polyamines in roots of intact maize seedlings. Plant Physiol 99:1400–1405CrossRefPubMedPubMedCentralGoogle Scholar
  26. Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51CrossRefPubMedGoogle Scholar
  27. Jena NR (2012) DNA damage by reactive species: mechanisms, mutation and repair. J Biosci 37:503–517CrossRefPubMedGoogle Scholar
  28. Kaminaka H, Morita S, Tokumoto M, Masumura T, Tanaka K (1999) Differential gene expression of rice superoxide dismutase isoforms to oxidative and environmental stresses. Free Radic Res 31:219–225CrossRefGoogle Scholar
  29. Kubiś J (2008) Exogenous spermidine differentially alters activities of some scavenging system enzymes, H2O2 and superoxide radical levels in water-stressed cucumber leaves. J Plant Physiol 165:397–406CrossRefPubMedGoogle Scholar
  30. Kumar D, Datta R, Hazra S, Sultana A, Mukhopadhyay R, Chattopadhyay S (2015) Transcriptomic profiling of Arabidopsis thaliana mutant pad2.1 in response to combined cold and osmotic stress. PLoS One 10:e0122690CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kurepa J, Smalle J, Montagu MV, Inzé D (1998) Polyamines and paraquat toxicity in Arabidopsis thaliana. Plant Cell Physiol 39:987–992CrossRefPubMedGoogle Scholar
  32. Kwak JM (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633CrossRefPubMedPubMedCentralGoogle Scholar
  33. Li CZ, Jiao J, Wang GX (2004) The important role of reactive oxygen species in the relationship between ethylene and polyamines in leaves of spring wheat seedlings under root osmotic stress. Plant Sci 166:303–315CrossRefGoogle Scholar
  34. Li JY, Mu JY, Bai JT, Fu FY, Zou TT, An FY, Zhang J, Jing HW, Wang Q, Li Z, Yang SH, Zuo JR (2013) Paraquat resistant 1, a golgi-localized putative transporter protein, is involved in intracellular transport of paraquat. Plant Physiol 162:470–483CrossRefPubMedPubMedCentralGoogle Scholar
  35. Marco F, Alcázar R, Tiburcio AF, Carrasco P (2011) Interactions between polyamines and abiotic stress pathway responses unraveled by transcriptome analysis of polyamine overproducers. OMICS 15:775–781CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mittler R, Blumwald E (2015) The roles of ROS and ABA in systemic acquired acclimation. Plant C 27:64–70CrossRefGoogle Scholar
  37. Mulangi V, Chibucos MC, Phuntumart V, Morris PF (2012) Kinetic and phylogenetic analysis of plant polyamine uptake transporters. Planta 236:1261–1273CrossRefPubMedGoogle Scholar
  38. Nayyar H, Chander S (2004) Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea. J Agron Crop Sci 190:355–365CrossRefGoogle Scholar
  39. Pottosin I, Velarde-Buendía AM, Bose J, Zepeda-Jazo I, Shabala S, Dobrovinskaya O (2014) Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. J Exp Bot 65:1271–1283CrossRefPubMedGoogle Scholar
  40. Seiler N, Raul F (2005) Polyamines and apoptosis. J Cell Mol Med 9:623–642CrossRefPubMedGoogle Scholar
  41. Shi LH, Bielawski J, Mu JY, Dong HL, Teng C, Zhang J, Yang XH, Tomishige N, Hanada K, Hannun YA, Zuo JR (2007) Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Res 17:1030–1040CrossRefPubMedGoogle Scholar
  42. Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295CrossRefPubMedGoogle Scholar
  43. Soar CJ, Preston C, Karotam J, Powles SB (2004) Polyamines can inhibit paraquat toxicity and translocation in the broadleaf weed Arctotheca calendula. Pestic Biochem Physiol 80:94–105CrossRefGoogle Scholar
  44. Stadtman E (1992) Protein oxidation and aging. Science 257:1220–1224CrossRefPubMedGoogle Scholar
  45. Szigeti Z (2005) Mechanism of paraquat resistance—from the antioxidant enzymes to the transporters. Acta Biologica Szegediensis 49:177–179Google Scholar
  46. Tang W, Newton RJ (2005) Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regul 46:31–43CrossRefGoogle Scholar
  47. Tanou G, Ziogas V, Belghazi M, Christou A, Filippou P, Job D, Fotopoulos V, Molassiotis A (2014) Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress. Plant Cell Environ 37:864–885CrossRefPubMedGoogle Scholar
  48. Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants from development to stress. Planta 240:1–18CrossRefPubMedGoogle Scholar
  49. Tsuji K, Hosokawa M, Morita S, Miura R, Tominaga T (2013) Resistance to paraquat in Mazus pumilus. Weed Res 53:176–182CrossRefGoogle Scholar
  50. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84CrossRefPubMedGoogle Scholar
  51. Xi J, Xu P, Xiang CB (2012) Loss of AtPDR11, a plasma membrane-localized ABC transporter, confers paraquat tolerance in Arabidopsis thaliana. Plant J 69:782–791CrossRefPubMedGoogle Scholar
  52. Ye B, Muller HH, Zhang J, Gressel J (1997) Constitutively elevated levels of putrescine and putrescine-generating enzymes correlated with oxidant stress resistance in Conyza bonariensis and wheat. Plant Physiol 115:1443–1451CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zhou J, Li X, Xia XJ, Zhou YH, Shi K, Chen Z, Yu JQ (2014) H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. J Exp Bot 65:4371–4383CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhu D, Scandalios JG (1994) Differential accumulation of manganese-superoxide dismutase transcripts in maize in response to abscisic acid and high osmoticum. Plant Physiol 106:173–178PubMedPubMedCentralGoogle Scholar
  55. Zuo JR, Niu QW, Chua NH (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24:265–273CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Shuchao Dong
    • 1
    • 2
  • Huizhen Hu
    • 1
    • 2
  • Youmei Wang
    • 1
    • 2
  • Zhengdan Xu
    • 1
    • 2
  • Yi Zha
    • 1
    • 2
  • Xiwen Cai
    • 1
    • 3
  • Liangcai Peng
    • 1
  • Shengqiu Feng
    • 1
    • 2
  1. 1.Biomass and Bioenergy Research Centre, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
  2. 2.National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
  3. 3.Department of Plant SciencesNorth Dakota State UniversityFargoUSA

Personalised recommendations