Skip to main content

Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions

Abstract

Understanding the photosynthetic responses of terrestrial plants to environments with high levels of CO2 is essential to address the ecological effects of elevated atmospheric CO2. Most photosynthetic models used for global carbon issues are based on steady-state photosynthesis, whereby photosynthesis is measured under constant environmental conditions; however, terrestrial plant photosynthesis under natural conditions is highly dynamic, and photosynthetic rates change in response to rapid changes in environmental factors. To predict future contributions of photosynthesis to the global carbon cycle, it is necessary to understand the dynamic nature of photosynthesis in relation to high CO2 levels. In this review, we summarize the current body of knowledge on the photosynthetic response to changes in light intensity under experimentally elevated CO2 conditions. We found that short-term exposure to high CO2 enhances photosynthetic rate, reduces photosynthetic induction time, and reduces post-illumination CO2 burst, resulting in increased leaf carbon gain during dynamic photosynthesis. However, long-term exposure to high CO2 during plant growth has varying effects on dynamic photosynthesis. High levels of CO2 increase the carbon gain in photosynthetic induction in some species, but have no significant effects in other species. Some studies have shown that high CO2 levels reduce the biochemical limitation on RuBP regeneration and Rubisco activation during photosynthetic induction, whereas the effects of high levels of CO2 on stomatal conductance differ among species. Few studies have examined the influence of environmental factors on effects of high levels of CO2 on dynamic photosynthesis. We identified several knowledge gaps that should be addressed to aid future predictions of photosynthesis in high-CO2 environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytol 165:351–371

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    CAS  Article  PubMed  Google Scholar 

  • Baldocchi D, Falge E, Wilson K (2001) A spectral analysis of biosphere–atmosphere trace gas flux densities and meteorological variables across hour to multi-year time scales. Agric For Meteorol 107:1–27

    Article  Google Scholar 

  • Bazzaz F, Williams WE (1991) Atmospheric CO2 concentrations within a mixed forest: implications for seedling growth. Ecology 72:12–16

  • Buchmann N, Weny KAO, Ehleringer JR (1996) Carbon dioxide concentrations within forest canopies—variation with time, stand structure, and vegetation type. Glob Chang Biol 2:421–432

    Article  Google Scholar 

  • Carmo-Silva AE, Salvucci ME (2013) The regulatory properties of Rubisco activase differ among species and affect photosynthetic induction during light transitions. Plant Physiol 161:1645–1655

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Chazdon RL (1988) Sunflecks and their importance to forest understorey plants. Adv Ecol Res 18:1–63

    Article  Google Scholar 

  • Chazdon RL, Pearcy RW (1986) Photosynthetic responses to light variation in rain-forest species. 1. Induction under constant and fluctuating light conditions. Oecologia 69:517–523

    Article  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci 97:13430–13435

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Day TA, Gober P, Xiong FS, Wentz EA (2002) Temporal patterns in near-surface CO2 concentrations over contrasting vegetation types in the Phoenix metropolitan area. Agric For Meteorol 110:229–245

    Article  Google Scholar 

  • Doehlert DC, Ku MS, Edwards GE (1979) Dependence of the post-illumination burst of CO2 on temperature, light, CO2, and O2 concentration in wheat (Triticum aestivum). Physiol Plant 46:299–306

    CAS  Article  Google Scholar 

  • Drake PL, Froend RH, Franks PJ (2013) Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. J Exp Bot 64:495–505

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J (2012) Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 63:1637–1661

    CAS  Article  PubMed  Google Scholar 

  • Franks PJ, Beerling DJ (2009) Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc Natl Acad Sci USA 106:10343–10347

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Holisova P, Zitova M, Klem K, Urban O (2012) Effect of elevated carbon dioxide concentration on carbon assimilation under fluctuating light. J Environ Qual 41:1931–1938

    CAS  Article  PubMed  Google Scholar 

  • Horton P, Ruban A, Walters R (1996) Regulation of light harvesting in green plants. Annu Rev Plant Biol 47:655–684

    CAS  Article  Google Scholar 

  • Kaiser E, Morales A, Harbinson J, Kromdijk J, Heuvelink E, Marcelis LF (2015) Dynamic photosynthesis in different environmental conditions. J Exp Bot 66:2415–2426

    Article  PubMed  Google Scholar 

  • Katul G, Lai C-T, Schäfer K, Vidakovic B, Albertson J, Ellsworth D, Oren R (2001) Multiscale analysis of vegetation surface fluxes: from seconds to years. Adv Water Resour 24:1119–1132

    Article  Google Scholar 

  • Kirschbaum MU, Pearcy RW (1988a) Gas exchange analysis of the fast phase of photosynthetic induction in Alocasia macrorrhiza. Plant Physiol 87:818–821

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Kirschbaum MU, Pearcy RW (1988b) Gas exchange analysis of the relative importance of stomatal and biochemical factors in photosynthetic induction in Alocasia macrorrhiza. Plant Physiol 86:782–785

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Knapp A, Fahnestock J, Owensby C (1994) Elevated atmospheric CO2 alters stomatal responses to variable sunlight in a C4 grass. Plant Cell Environ 17:189–195

    Article  Google Scholar 

  • Kono M, Terashima I (2014) Long-term and short-term responses of the photosynthetic electron transport to fluctuating light. J Photochem Photobiol B Biol 137:89–99

    CAS  Article  Google Scholar 

  • Kosvancova M, Urban O, Sprtova M, Hrstka M, Kalina J, Tomaskova I, Spunda V, Marek MV (2009) Photosynthetic induction in broadleaved Fagus sylvatica and coniferous Picea abies cultivated under ambient and elevated CO2 concentrations. Plant Sci 177:123–130

    CAS  Article  Google Scholar 

  • Külheim C, Ågren J, Jansson S (2002) Rapid regulation of light harvesting and plant fitness in the field. Science 297:91–93

    Article  PubMed  Google Scholar 

  • Laisk A, Edwards GE (1997) Post-illumination CO2 exchange and light-induced CO2 bursts during C4 photosynthesis. Funct Plant Biol 24:517–528

    CAS  Google Scholar 

  • Laisk A, Kiirats O, Oja V (1984) Assimilatory Power (Postillumination CO2 Uptake) in Leaves. Plant Physiol 76:723–729

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Leakey A, Press M, Scholes J, Watling J (2002) Relative enhancement of photosynthesis and growth at elevated CO2 is greater under sunflecks than uniform irradiance in a tropical rain forest tree seedling. Plant Cell Environ 25:1701–1714

    Article  Google Scholar 

  • Leakey AD, Scholes JD, Press MC (2005) Physiological and ecological significance of sunflecks for dipterocarp seedlings. J Exp Bot 56:469–482

    CAS  Article  PubMed  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face the future. Annu Rev Plant Biol 55:591–628

    CAS  Article  PubMed  Google Scholar 

  • Marin D, Martin M, Serrot PH, Sabater B (2014) Thermodynamic balance of photosynthesis and transpiration at increasing CO2 concentrations and rapid light fluctuations. Biosystems 116:21–26

    CAS  Article  PubMed  Google Scholar 

  • Martin M, Noarbe DM, Serrot PH, Sabater B (2015) The rise of the photosynthetic rate when light intensity increases is delayed in ndh gene-defective tobacco at high but not at low CO2 concentrations. Front Plant Sci 6:34

    PubMed  PubMed Central  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  PubMed Central  Google Scholar 

  • Naumburg E, Ellsworth DS (2000) Photosynthetic sunfleck utilization potential of understory saplings growing under elevated CO2 in FACE. Oecologia 122:163–174

    Article  Google Scholar 

  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, Dubash NK, Edenhofer O, Elgizouli I, Field CB, Forster P, Friedlingstein P, Fuglestvedt J, Gomez-Echeverri L, Hallegatte S, Hegerl G, Howden M, Jiang K, Jimenez Cisneroz B, Kattsov V, Lee H, Mach KJ, Marotzke J, Mastrandrea MD, Meyer L, Minx J, Mulugetta Y, O'Brien K, Oppenheimer M, Pereira JJ, Pichs-Madruga R, Plattner GK, Pörtner HO, Power SB, Preston B, Ravindranath NH, Reisinger A, Riahi K, Rusticucci M, Scholes R, Seyboth K, Sokona Y, Stavins R, Stocker TF, Tschakert P, van Vuuren D, van Ypserle JP (2014) Climate Change 2014: Synthesis Report. In: Pachauri R, Meyer L (eds) Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland, IPCC, p 151

  • Pearcy RW (1990) Sunflecks and photosynthesis in plant canopies. Annu Rev Plant Biol 41:421–453

    CAS  Article  Google Scholar 

  • Pearcy RW (1999) Responses of plants to heterogeneous light environments. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology, Marcel Dekker Inc., New York Basel, pp 269–314

  • Pearcy RW (2007) Responses of plants to heterogeneous light environments. In: Pugnaire FI, Valladares F (eds) Functional plant ecology. CRC Press, Boca Raton, pp 213–257

    Google Scholar 

  • Pearcy R, Pfitsch WA (1995) The consequences of sunflecks for photosynthesis and growth of forest understory plants. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 343–359

  • Pearcy RW, Way DA (2012) Two decades of sunfleck research: looking back to move forward. Tree Physiol 32:1059–1061

    Article  PubMed  Google Scholar 

  • Pearcy RW, Chazdon RL, Gross LJ, Mott KA (1994) Photosynthetic utilization of sunflecks: a temporally patchy resource on a time scale of seconds to minutes. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity by plants. Academic Press, San Diego, pp 175–208

  • Pearcy RW, Krall JP, Sassenrath-Cole GF (1996) Photosynthesis in fluctuating light environments. In: Baker NR (ed) Photosynthesis and the environment. Springer, Berlin, pp 321–346

  • Rascher U, Nedbal L (2006) Dynamics of photosynthesis in fluctuating light. Curr Opin Plant Biol 9:671–678

    CAS  Article  PubMed  Google Scholar 

  • Raven JA (2014) Speedy small stomata? J Exp Bot 65:1415–1424

    CAS  Article  PubMed  Google Scholar 

  • Rochaix JD (2011) Reprint of: regulation of photosynthetic electron transport. Biochim Biophys Acta 1807:878–886

    CAS  Article  PubMed  Google Scholar 

  • Sage RF (1994) Acclimation of photosynthesis to increasing atmospheric CO2: The gas exchange perspective. Photosynth Res 39:351–368

    CAS  Article  PubMed  Google Scholar 

  • Sage RF, Sharkey TD, Seemann JR (1989) Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiol 89:590–596

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Sharkey TD, Seemann JR, Pearcy RW (1986) Contribution of metabolites of photosynthesis to postillumination CO2 assimilation in response to lightflects. Plant Physiol 82:1063–1068

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Sharkey TD, Wiberley AE, Donohue AR (2008) Isoprene emission from plants: why and how. Ann Bot 101:5–18

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Soleh MA, Tanaka Y, Nomoto Y, Iwahashi Y, Nakashima K, Fukuda Y, Long AP, Shiraiwa T (2016) Factors underlying genotypic differences in the induction of photosynthesis in soybean [Glycine max (L.) Merr.]. Plant Cell Envi 39:685–693

    CAS  Article  Google Scholar 

  • Sun Z, Niinemets U, Huve K, Rasulov B, Noe SM (2013) Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides). New Phytol 198:788–800

    CAS  Article  PubMed  Google Scholar 

  • Tang Y, Liang N (2000) Characterization of the photosynthetic induction response in a Populus species with stomata barely responding to light changes. Tree Physiol 20:969–976

    CAS  Article  PubMed  Google Scholar 

  • Tang Y, Washitani I, Tsuchiya T, Iwaki H (1988) Fluctuation of photosynthetic photon flux density within a Miscanthus sinensis canopy. Ecol Res 3:253–266

    Article  Google Scholar 

  • Tikhonov AN (2015) Induction events and short-term regulation of electron transport in chloroplasts: an overview. Photosynth Res 125:65–94

    CAS  Article  PubMed  Google Scholar 

  • Tinoco-Ojanguren C, Pearcy RW (1993) Stomatal dynamics and its importance to carbon gain in two rainforest Piper species. I. VPD effects on the transient stomatal response to lightflecks. Oecologia 94:388–394

    Article  Google Scholar 

  • Tomimatsu H, Tang YH (2012) Elevated CO2 differentially affects photosynthetic induction response in two Populus species with different stomatal behavior. Oecologia 169:869–878

    Article  PubMed  Google Scholar 

  • Tomimatsu H, Iio A, Adachi M, Saw LG, Fletcher C, Tang Y (2014) High CO2 concentration increases relative leaf carbon gain under dynamic light in Dipterocarpus sublamellatus seedlings in a tropical rain forest, Malaysia. Tree Physiol 34:944–954

    CAS  Article  PubMed  Google Scholar 

  • Vines HM, Tu Z-P, Armitage AM, Chen S-S, Black CC (1983) Environmental responses of the post-lower illumination CO2 burst as related to leaf photorespiration. Plant Physiol 73:25–30

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Way DA, Pearcy RW (2012) Sunflecks in trees and forests: from photosynthetic physiology to global change biology. Tree Physiol 32:1066–1081

    Article  PubMed  Google Scholar 

  • Way DA, Schnitzler JP, Monson RK, Jackson RB (2011) Enhanced isoprene-related tolerance of heat- and light-stressed photosynthesis at low, but not high, CO2 concentrations. Oecologia 166:273–282

    Article  PubMed  Google Scholar 

  • Wilkinson MJ, Monson RK, Trahan N, Lee S, Brown E, Jackson RB, Polley HW, Fay PA, Fall RAY (2009) Leaf isoprene emission rate as a function of atmospheric CO2 concentration. Glob Chang Biol 15:1189–1200

    Article  Google Scholar 

  • Woodward F, Kelly C (1995) The influence of CO2 concentration on stomatal density. New Phytol 131:311–327

    Article  Google Scholar 

  • Yamori W, Masumoto C, Fukayama H, Makino A (2012) Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and to a lesser extent, of steady-state photosynthesis at high temperature. Plant J 71:871–880

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ichiro Terashima and Dr. Hiroyuki Muraoka for their invitation to this special issue, and their warm encouragement and patience during the preparation of this review paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hajime Tomimatsu or Yanhong Tang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tomimatsu, H., Tang, Y. Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions. J Plant Res 129, 365–377 (2016). https://doi.org/10.1007/s10265-016-0817-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-016-0817-0

Keywords

  • Carbon dioxide
  • Dynamic photosynthesis
  • Elevated CO2
  • Fluctuating irradiance
  • Lightfleck
  • Sunfleck