Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270. doi:10.1111/j.1365-3040.2007.01641.x
CAS
PubMed
Article
Google Scholar
Ainsworth EA, Davey PA, Bernacchi CJ et al (2002) A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Glob Chang Biol 8:695–709. doi:10.1046/j.1365-2486.2002.00498.x
Article
Google Scholar
Allen JF (2003) Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci 8:15–19. doi:10.1016/S1360-1385(02)00006-7
CAS
PubMed
Article
Google Scholar
Allen MT, Pearcy RW (2000) Stomatal versus biochemical limitations to dynamic photosynthetic performance in four tropical rainforest shrub species. Oecologia 122:479–486. doi:10.1007/s004420050969
Article
Google Scholar
André MJ (2011) Modelling 18O2 and 16O2 unidirectional fluxes in plants: II. Analysis of Rubisco evolution. Biosystems 103:252–264. doi:10.1016/j.biosystems.2010.10.003
PubMed
Article
CAS
Google Scholar
Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701
CAS
Article
Google Scholar
Arena C, Vitale L, De Santo AV (2008) Paraheliotropism in Robinia pseudoacacia L.: an efficient strategy to optimise photosynthetic performance under natural environmental conditions. Plant Biol 10:194–201. doi:10.1111/j.1438-8677.2008.00032.x
CAS
PubMed
Article
Google Scholar
Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134. doi:10.1016/0005-2728(93)90134-2
CAS
PubMed
Article
Google Scholar
Aro E-M, Suorsa M, Rokka A et al (2005) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 56:347–356. doi:10.1093/jxb/eri041
CAS
PubMed
Article
Google Scholar
Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639. doi:10.1146/annurev.arplant.50.1.601
CAS
PubMed
Article
Google Scholar
Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396. doi:10.1104/pp.106.082040
CAS
PubMed
PubMed Central
Article
Google Scholar
Baena-Gonzalez E, Aro EM (2002) Biogenesis, assembly and turnover of photosystem II units. Philos Trans R Soc Lond B Biol Sci 357:1451–1459. doi:10.1098/rstb.2002.1141
CAS
PubMed
PubMed Central
Article
Google Scholar
Bai KD, Liao DB, Jiang DB, Cao KF (2008) Photosynthetic induction in leaves of co-occurring Fagus lucida and Castanopsis lamontii saplings grown in contrasting light environments. Trees 22:449–462. doi:10.1007/s00468-007-0205-4
CAS
Article
Google Scholar
Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners and origin. Trends Plant Sci 15:330–336. doi:10.1016/j.tplants.2010.03.006
CAS
PubMed
Article
Google Scholar
Bernacchi CJ, Bagley JE, Serbin SP et al (2013) Modelling C3 photosynthesis from the chloroplast to the ecosystem. Plant Cell Environ 36:1641–1657. doi:10.1111/pce.12118
CAS
PubMed
Article
Google Scholar
Bielenberg DG, Miller JD, Berg VS (2003) Paraheliotropism in two Phaseolus species: combined effects of photon flux density and pulvinus temperature, and consequences for leaf gas exchange. Environ Exp Bot 49:95–105. doi:10.1016/S0098-8472(02)00062-X
CAS
Article
Google Scholar
Blot N, Mella-Flores D, Six C et al (2011) Light history influences the response of the marine cyanobacterium Synechococcus sp. WH7803 to oxidative stress. Plant Physiol 156:1934–1954. doi:10.1104/pp.111.174714
CAS
PubMed
PubMed Central
Article
Google Scholar
Brugnoli E, Bjorkman O (1992) Chloroplast movements in leaves: influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to pH and zeaxanthin formation. Photosynth Res 32:23–35. doi:10.1007/BF00028795
CAS
PubMed
Article
Google Scholar
Buchanan BB (1980) Role of light in the regulation of chloroplast enzymes. Annu Rev Plant Physiol 31:341–374. doi:10.1146/annurev.pp.31.060180.002013
CAS
Article
Google Scholar
Buchanan BB (1991) Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Perspective on its discovery, present status, and future development. Arch Biochem Biophys 288:1–9. doi:10.1016/0003-9861(91)90157-E
CAS
PubMed
Article
Google Scholar
Bunce JA (1997) Does transpiration control stomatal responses to water vapour pressure deficit? Plant Cell Environ 20:131–135
Article
Google Scholar
Burrows PA, Sazanov LA, Svab Z, Maliga P, Nixon PJ (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17:868–876. doi:10.1093/emboj/17.4.868
CAS
PubMed
PubMed Central
Article
Google Scholar
Cardon ZG, Berry J (1992) Effects of O2 and CO2 concentration on the steady-state fluorescence yield of single guard cell pairs in intact leaf discs of Tradescantia albiflora. Plant Physiol 99:1238–1244. doi:10.1104/pp.99.3.1238
CAS
PubMed
PubMed Central
Article
Google Scholar
Cardon ZG, Berry JA, Woodward IE (1994) Dependence of the extent and direction of average stomatal responses in Zea mays L. and Phaseolus vulgaris L. on the frequency of fluctuations in environmental stimuli. Plant Physiol 105:1007–1013. doi:10.1104/pp.105.3.1007
CAS
PubMed
PubMed Central
Google Scholar
Cardon ZG, Berry JA, Woodward IE (1995) Fluctuating [CO2] drives species specific changes in water use efficiency. J Biogeogr 22:203–208. doi:10.2307/2845911
Article
Google Scholar
Carol P, Kuntz M (2001) A plastid terminal oxidase comes to light: implications for carotenoid biosynthesis and chlororespiration. Trend Plant Sci 6:31–36. doi:10.1016/S1360-1385(00)01811-2
CAS
Article
Google Scholar
Chang CC, Slesak I, Jordá L et al (2009) Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. Plant Physiol 150:670–683. doi:10.1104/pp.109.135566
CAS
PubMed
PubMed Central
Article
Google Scholar
Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560. doi:10.1093/aob/mcn125
CAS
PubMed
PubMed Central
Article
Google Scholar
Chazdon RL, Pearcy RW (1986) Photosynthetic responses to light variation in rainforest species. II. Carbon gain and photosynthetic efficiency during lightflecks. Oecologia 69:524–531. doi:10.1007/BF00410358
Article
Google Scholar
Chen JW, Zhang Q, Li XS, Cao KF (2011) Steady and dynamic photosynthetic responses of seedlings from contrasting successional groups under low-light growth conditions. Physiol Plant 141:84–95. doi:10.1111/j.1399-3054.2010.01414.x
CAS
PubMed
Article
Google Scholar
Clarke JE, Johnson GN (2001) In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley. Planta 212:808–816. doi:10.1007/s004250000432
CAS
PubMed
Article
Google Scholar
Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93:9970–9974
CAS
PubMed
PubMed Central
Article
Google Scholar
Corlett JE, Jones HG, Massacci A, Masojidek J (1994) Water deficit, leaf rolling and susceptibility to photoinhibition in field grown sorghum. Physiol Plant 92:423–430. doi:10.1111/j.1399-3054.1994.tb08831.x
CAS
Article
Google Scholar
Cornic G (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture—not by affecting ATP synthesis. Trends Plant Sci 5:187–188. doi:10.1016/S1360-1385(00)01625-3
Article
Google Scholar
Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci USA 97:13430–13435. doi:10.1073/pnas.230451497
CAS
PubMed
PubMed Central
Article
Google Scholar
DalCorso G, Pesaresi P, Masiero S et al (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132:273–285. doi:10.1016/j.cell.2007.12.028
CAS
PubMed
Article
Google Scholar
Davison PA, Hunter CN, Horton P (2002) Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418:203–206. doi:10.1038/nature00861
CAS
PubMed
Article
Google Scholar
DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738. doi:10.1146/annurev.arplant.56.032604.144301
CAS
PubMed
Article
Google Scholar
Demmig-Adams B, Adams WW III (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626. doi:10.1146/annurev.pp.43.060192.003123
CAS
Article
Google Scholar
Eberhard S, Finazzi G, Wollman FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515. doi:10.1146/annurev.genet.42.110807.091452
CAS
PubMed
Article
Google Scholar
Evans JR, Jakobsen I, Ogren E (1993) Photosynthetic light-response curves 2. Gradients of light absorption and photosynthetic capacity. Planta 189:191–200. doi:10.1007/BF00195076
CAS
Article
Google Scholar
Fan DY, Nie Q, Hope AB, Hillier W, Pogson BJ, Chow WS (2007) Quantification of cyclic electron flow around photosystem I in spinach leaves during photosynthetic induction. Photosynth Res 94:347–357. doi:10.1007/s11120-006-9127-z
CAS
PubMed
Article
Google Scholar
Fan D, Ye Z, Wang S, Chow WS (2016) Multiple roles of oxygen in the photoinactivation and dynamic repair of photosystem II in spinach leaves. Photosynth Res 127:307–319. doi:10.1007/s11120-015-0185-y
CAS
PubMed
Article
Google Scholar
Farquhar GD, Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90. doi:10.1007/BF00386231
CAS
PubMed
Article
Google Scholar
Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189. doi:10.1093/aob/mcf027
CAS
PubMed
PubMed Central
Article
Google Scholar
Forseth IN, Ehleringer JR (1982) Ecophysiology of two solar-tracking desert winter annuals. II. Leaf movements, water relations and microclimate. Oecologia 54:41–49. doi:10.1007/BF00541105
Article
Google Scholar
Foyer CH, Trebst A, Noctor G (2006) Signaling and integration of defense functions of tocopherol, ascorbate and glutathione. In: Demmig-Adams B, Adams WW III, Mattoo AK (eds) Photoprotection, photoinhibition, gene regulation and environment. Springer, Dordrecht, pp 241–268. doi:10.1007/1-4020-3579-9_16
Chapter
Google Scholar
Gamon JA, Pearcy RW (1989) Leaf movement, stress avoidance and photosynthesis in Vitis californica. Oecologia 79:475–481. doi:10.1007/BF00378664
Article
Google Scholar
Gamon JA, Pearcy RW (1990) Photoinhibition in Vitis californica: interactive effects of sunlight, temperature and water status. Plant Cell Environ 13:267–275. doi:10.1111/j.1365-3040.1990.tb01311.x
CAS
Article
Google Scholar
Golding AJ, Finazzi G, Johnson GN (2004) Reduction of the thylakoid electron transport chain by stromal reductants: evidence for activation of cyclic electron transport upon dark adaptation or under drought. Planta 220:356–363. doi:10.1007/s00425-004-1345-z
CAS
PubMed
Article
Google Scholar
Grieco M, Tikkanen M, Paakkarinen V, Kangasjarvi S, Aro EM (2012) Steady-state phosphorylation of light-harvesting complex II proteins preserves photosystem I under fluctuating white light. Plant Physiol 160:1896–1910. doi:10.1104/pp.112.206466
CAS
PubMed
PubMed Central
Article
Google Scholar
Groenendijk M, Dolman AJ, van der Molen MK et al (2011) Assessing parameter variability in a photosynthesis model within and between plant functional types using global Fluxnet eddy covariance data. Agric For Meteorol 151:22–38. doi:10.1016/j.agrformet.2010.08.013
Article
Google Scholar
Han Q, Yamaguchi E, Odaka N, Kakubari Y (1999) Photosynthetic induction responses to variable light under field conditions in three species grown in the gap and understory of a Fagus crenata forest. Tree Physiol 19:625–634. doi:10.1093/treephys/19.10.625
PubMed
Article
Google Scholar
Hanson DT, Swanson S, Graham LE, Sharkey TD (1999) Evolutionary significance of isoprene emission from mosses. Am J Bot 86:634–639. doi:10.2307/2656571
CAS
PubMed
Article
Google Scholar
Havaux M, Davaud A (1994) Photoinhibition of photosynthesis in chilled potato leaves is not correlated with a loss of photosystem-II activity. Photosynth Res 40:75–92. doi:10.1007/BF00019047
CAS
PubMed
Article
Google Scholar
Havaux M, Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA 96:8762–8767. doi:10.1073/pnas.96.15.8762
CAS
PubMed
PubMed Central
Article
Google Scholar
Hertle AP, Blunder T, Wunder T et al (2013) PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol Cell 49:511–523. doi:10.1016/j.molcel.2012.11.030
CAS
PubMed
Article
Google Scholar
Hideg É, Deák Z, Hakala-Yatkin M et al (2011) Pure forms of the singlet oxygen sensors TEMP and TEMPD do not inhibit photosystem II. Biochim Biophys Acta 1807:1658–1661. doi:10.1016/j.bbabio.2011.09.009
CAS
PubMed
Article
Google Scholar
Holt NE, Fleming GR, Niyogi KK (2004) Toward an understanding of the mechanism of non-photochemical quenching in green plants. Biochemistry 43:8281–8289. doi:10.1021/bi0494020
CAS
PubMed
Article
Google Scholar
Horváth EM, Peter SO, Joet T et al (2000) Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiol 123:1337–1350. doi:10.1104/pp.123.4.1337
PubMed
PubMed Central
Article
Google Scholar
Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 72:1143–1154. doi:10.1271/bbb.80062
CAS
PubMed
Article
Google Scholar
Jiang CD, Gao HY, Zou Q, Jiang GM, Li LH (2006) Leaf orientation, photorespiration and xanthophyll cycle protect young soybean leaves against high irradiance in the field. Environ Exp Bot 55:87–96. doi:10.1016/j.envexpbot.2004.10.003
CAS
Article
Google Scholar
Josse EM, Simkin AJ, Gaffé J, Labouré AM, Kuntz M, Carol P (2000) A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiol 123:1427–1436. doi:10.1104/pp.123.4.1427
CAS
PubMed
PubMed Central
Article
Google Scholar
Kagawa T, Wada M (2004) Velocity of chloroplast avoidance movement is fluence rate dependent. Photochem Photobiol Sci 3:592–595. doi:10.1039/B316285K
CAS
PubMed
Article
Google Scholar
Kaiser E, Morales A, Harbinson J, Kromdijk J, Heuvelink E, Marcelis LFM (2015) Dynamic photosynthesis in different environmental conditions. J Exp Bot 66:2415–2426. doi:10.1093/jxb/eru406
PubMed
Article
Google Scholar
Kanwischer M, Porfirova S, Bergmüller E, Dörmann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137:713–723. doi:10.1104/pp.104.054908
CAS
PubMed
PubMed Central
Article
Google Scholar
Kasahara M, Kagawa T, Oikawa K et al (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832. doi:10.1038/nature01213
CAS
PubMed
Article
Google Scholar
Kirschbaum MUF, Pearcy RW (1988) Gas exchange analysis of the fast phase of photosynthetic induction in Alocasia macrorrhiza. Plant Physiol 87:818–821. doi:10.1104/pp.87.4.818
CAS
PubMed
PubMed Central
Article
Google Scholar
Kofer W, Koop HU, Wanner G, Steinmüller K (1998) Mutagenesis of the genes encoding subunits A, C, H, I, J and K of the plastid NAD(P)H-plastoquinone-oxidoreductase in tobacco by polyethylene glycol-mediated plastome transformation. Mol Gen Genet 258:166–173. doi:10.1007/s004380050719
CAS
PubMed
Article
Google Scholar
Kono M, Noguchi K, Terashima I (2014) Roles of cyclic electron flow around PSI (CEF-PSI) and O2-dependent alternative pathways in regulation of the photosynthetic electron flow in short-term fluctuating light in Arabidopsis thaliana. Plant Cell Physiol 55:990–1004. doi:10.1093/pcp/pcu033
CAS
PubMed
Article
Google Scholar
Kornyeyev D, Logan BA, Allen RD, Holaday AS (2003a) Effect of chloroplastic overexpression of ascorbate peroxidase on photosynthesis and photoprotection in cotton leaves subjected to low temperature photoinhibition. Plant Sci 165:1033–1041. doi:10.1016/S0168-9452(03)00294-2
CAS
Article
Google Scholar
Kornyeyev D, Logan BA, Payton PR, Allen RD, Holaday AS (2003b) Elevated chloroplastic glutathione reductase activities decrease chilling-induced photoinhibition by increasing rates of photochemistry, but not thermal energy dissipation, in transgenic cotton. Funct Plant Biol 30:101–110. doi:10.1071/FP02144
CAS
Article
Google Scholar
Kornyeyev D, Logan BA, Holaday AS (2010) Excitation pressure as a measure of the sensitivity of photosystem II to photoinactivation. Funct Plant Biol 37:943–951. doi:10.1071/fp09276
CAS
Article
Google Scholar
Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560. doi:10.1038/384557a0
CAS
Article
Google Scholar
Kramer DM, Avenson TJ, Edwards GE (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci 9:349–357. doi:10.1016/j.tplants.2004.05.001
CAS
PubMed
Article
Google Scholar
Kudoh H, Sonoike K (2002) Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta 215:541–548. doi:10.1007/s00425-002-0790-9
CAS
PubMed
Article
Google Scholar
Kuntz M (2004) Plastid terminal oxidase and its biological significance. Planta 218:896–899. doi:10.1007/s00425-004-1217-6
CAS
PubMed
Article
Google Scholar
Kuvykin IV, Ptushenko VV, Vershubskii AV, Tikhonov AN (2011) Regulation of electron transport in C3 plant chloroplasts in situ and in silico. Short-term effects of atmospheric CO2 and O2. Biochim Biophys Acta 1807:336–347. doi:10.1016/j.bbabio.2010.12.012
CAS
PubMed
Article
Google Scholar
Laisk A, Eichelmann H, Oja V, Peterson RB (2005) Control of cytochrome b6f at low and high light intensity and cyclic electron transport in leaves. Biochim Biophys Acta 1708:79–90. doi:10.1016/j.bbabio.2005.01.007
CAS
PubMed
Article
Google Scholar
Laisk A, Eichelmann H, Oja V, Talts E, Scheibe R (2007) Rates and roles of cyclic and alternative electron flow in potato leaves. Plant Cell Physiol 48:1575–1588. doi:10.1093/pcp/pcm129
CAS
PubMed
Article
Google Scholar
Lawson T, Oxborough K, Morison JIL, Baker NR (2002) Responses of photosynthetic electron transport in stomatal guard cells and mesophyll cells in intact leaves to light, CO2, and humidity. Plant Physiol 128:52–62. doi:10.1104/pp.010317
CAS
PubMed
PubMed Central
Article
Google Scholar
Leakey ADB, Scholes JD, Press MC (2004) Physiological and ecological significance of sunflecks for dipterocarp seedlings. J Exp Bot 56:469–482. doi:10.1093/jxb/eri055
PubMed
Article
CAS
Google Scholar
Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395. doi:10.1038/35000131
CAS
PubMed
Article
Google Scholar
Li XP, Muller-Moule P, Gilmore AM, Niyogi KK (2002) PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proc Natl Acad Sci USA 99:15222–15227. doi:10.1073/pnas.232447699
CAS
PubMed
PubMed Central
Article
Google Scholar
Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330
CAS
PubMed
Article
Google Scholar
Lu N, Nukaya T, Kamimura T et al (2015) Control of vapor pressure deficit (VPD) in greenhouse enhanced tomato growth and productivity during the winter season. Sci Hortic 197:17–23. doi:10.1016/j.scienta.2015.11.001
Article
Google Scholar
Ludlow MM, Bjorkman O (1984) Paraheliotropic leaf movement in Siratro as a protective mechanism against drought-induce damage to primary photosynthetic reactions: damage by excessive light and heat. Planta 161:505–518. doi:10.1007/BF00407082
CAS
PubMed
Article
Google Scholar
Makino A, Miyake C, Yokota A (2002) Physiological functions of the water-water cycle (Mehler reaction) and the cyclic electron flow around PSI in rice leaves. Plant Cell Physiol 43:1017–1026. doi:10.1093/pcp/pcf124
CAS
PubMed
Article
Google Scholar
McDonald AE, Ivanov AG, Bode R, Maxwell DP, Rodermel SR, Huner NPA (2011) Flexibility in photosynthetic electron transport: the physiological role of plastoquinol terminal oxidase (PTOX). Biochim Biophys Acta 1807:954–967. doi:10.1016/j.bbabio.2010.10.024
CAS
PubMed
Article
Google Scholar
Medlyn BE, Barton CVM, Broadmeadow MSJ et al (2001) Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol 149:247–264. doi:10.1046/j.1469-8137.2001.00028.x
Article
Google Scholar
Mehler AH (1951) Studies on reactions of illuminated chloroplasts. I. Mechanisms of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys 33:65–77. doi:10.1016/0003-9861(51)90082-3
CAS
PubMed
Article
Google Scholar
Miyake C (2010) Alternative electron flows (water-water cycle and cyclic electron flow around PSI) in photosynthesis: molecular mechanisms and physiological functions. Plant Cell Physiol 51:1951–1963. doi:10.1093/pcp/pcq173
CAS
PubMed
Article
Google Scholar
Miyake C, Okamura M (2003) Cyclic electron flow within PSII protects PSII from its photoinhibition in thylakoid membranes from spinach chloroplasts. Plant Cell Physiol 44:457–462. doi:10.1093/pcp/pcg053
CAS
PubMed
Article
Google Scholar
Miyake C, Miyata M, Shinzaki Y, Tomizawa K (2005) CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves—relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence. Plant Cell Physiol 46:629–637. doi:10.1093/pcp/pci067
CAS
PubMed
Article
Google Scholar
Morison JIL (1998) Stomatal response to increased CO2 concentration. J Exp Bot 49:443–453. doi:10.1093/jxb/49.Special_Issue.443
Article
Google Scholar
Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566. doi:10.1104/pp.125.4.1558
PubMed
PubMed Central
Article
Google Scholar
Munekage Y, Hojo M, Meurer J et al (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371. doi:10.1016/S0092-8674(02)00867-X
CAS
PubMed
Article
Google Scholar
Munekage Y, Hashimoto M, Miyake C et al (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582. doi:10.1038/nature02598
CAS
PubMed
Article
Google Scholar
Murchie EH, Chen YZ, Hubbart S, Peng SB, Horton P (1999) Interactions between senescence and leaf orientation determine in situ patterns of photosynthesis and photoinhibition in field-grown rice. Plant Physiol 119:553–563. doi:10.1104/pp.119.2.553
CAS
PubMed
PubMed Central
Article
Google Scholar
Naumburg E, Ellsworth DS (2002) Short-term light and leaf photosynthetic dynamics affect estimates of daily understory photosynthesis in four tree species. Tree Physiol 22:393–401. doi:10.1093/treephys/22.6.393
PubMed
Article
Google Scholar
Nawrocki WJ, Tourasse NJ, Taly A, Rappaport F, Wollman FA (2015) The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology. Ann Rev Plant Biol 66:49–74. doi:10.1146/annurev-arplant-043014-114744
CAS
Article
Google Scholar
Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757:742–749. doi:10.1016/j.bbabio.2006.05.013
CAS
PubMed
Article
Google Scholar
Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359. doi:10.1146/annurev.arplant.50.1.333
CAS
PubMed
Article
Google Scholar
Niyogi KK (2000) Safety valves for photosynthesis. Curr Opin Plant Biol 3:455–460. doi:10.1016/S1369-5266(00)00113-8
CAS
PubMed
Article
Google Scholar
Niyogi KK, Li XP, Rosenberg V, Jung HS (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? J Exp Bot 56:375–382. doi:10.1093/jxb/eri056
CAS
PubMed
Article
Google Scholar
Noctor G, Dutilleul C, De Paepe R, Foyer CH (2004) Use of mitochondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the integration of carbon/nitrogen metabolism. J Exp Bot 55:49–57. doi:10.1093/jxb/erh021
CAS
PubMed
Article
Google Scholar
Noguchi K, Yoshida K (2008) Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion 8:87–99. doi:10.1016/j.mito.2007.09.003
CAS
PubMed
Article
Google Scholar
Ogren WL (1984) Photorespiration: pathways, regulation, and modification. Ann Rev Plant Physiol 35:415–442. doi:10.1146/annurev.pp.35.060184.002215
CAS
Article
Google Scholar
Ögren E, Evans JR (1993) Photosynthetic light response curves. 1. The influence of CO2 partial pressure and leaf inversion. Planta 189:182–190. doi:10.1007/BF00195075
Article
Google Scholar
Ort DR, Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr Opp Plant Biol 5:193–197. doi:10.1016/S1369-5266(02)00259-5
CAS
Article
Google Scholar
Osmond CB (1981) Photorespiration and photoinhibition. Some implications for the energetics of photosynthesis. Biochim Biophys Acta 639:77–98. doi:10.1016/0304-4173(81)90006-9
CAS
Article
Google Scholar
Pastenes C, Pimentel P, Lillo J (2005) Leaf movements and photoinhibition in relation to water stress in field-grown beans. J Exp Bot 56:425–433. doi:10.1093/jxb/eri061
CAS
PubMed
Article
Google Scholar
Peak D, Mott KA (2011) A new, vapour-phase mechanism for stomatal responses to humidity and temperature. Plant Cell Environ 34:162–178. doi:10.1111/j.1365-3040.2010.02234.x
PubMed
Article
Google Scholar
Pearcy RW (1988) Photosynthetic utilization of lightflecks by understory plants. Aust J Plant Physiol 15:223–238. doi:10.1071/PP9880223
Article
Google Scholar
Pearcy RW (1990) Sunflecks and photosynthesis in plant canopies. Annu Rev Plant Physiol Plant Mol Biol 41:421–453. doi:10.1146/annurev.pp.41.060190.002225
CAS
Article
Google Scholar
Pearcy RW, Way DA (2012) Two decades of sunfleck research: looking back to move forward. Tree Physiol 32:1059–1061. doi:10.1093/treephys/tps084
PubMed
Article
Google Scholar
Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53:523–550. doi:10.1146/annurev.arplant.53.100301.135242
CAS
PubMed
Article
Google Scholar
Peng L, Yamamoto H, Shikanai T (2011) Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex. Biochim Biophys Acta 1807:945–953. doi:10.1016/j.bbabio.2010.10.015
CAS
PubMed
Article
Google Scholar
Pfitsch WA, Pearcy RW (1989) Steady-state and dynamic photosynthetic response of Adenocaulon bicolor (Asteraceae) in its redwood forest habitat. Oecologia 80:471–476. doi:10.1007/BF00380068
Article
Google Scholar
Portis AR Jr (2003) Rubisco activase: Rubisco’s catalytic chaperone. Photosynth Res 75:11–27. doi:10.1023/A:1022458108678
CAS
PubMed
Article
Google Scholar
Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35:15–44. doi:10.1146/annurev.pp.35.060184.000311
CAS
Article
Google Scholar
Prasil O, Kolber Z, Berry JA, Falkowski PG (1996) Cyclic electron flow around photosystem II in vivo. Photosynth Res 48:395–410. doi:10.1007/BF00029472
CAS
PubMed
Article
Google Scholar
Raghavendra AS, Padmasree K (2003) Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci 8:546–553. doi:10.1016/j.tplants.2003.09.015
CAS
PubMed
Article
Google Scholar
Rawson HM, Begg JE, Woodward RG (1977) The effect of atmospheric humidity on photosynthesis, transpiration and water use efficiency of leaves of several plant species. Planta 134:5–10. doi:10.1007/BF00390086
CAS
PubMed
Article
Google Scholar
Rijkers T, de Vries PJ, Pons TL, Bongers F (2000) Photosynthetic induction in saplings of three shade-tolerant tree species: comparing understorey and gap habitats in a French Guiana rain forest. Oecologia 125:331–340. doi:10.1007/s004420000459
Article
Google Scholar
Ruuska SA, Badger MR, Andrews TJ, von Caemmerer S (2000) Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: little evidence for significant Mehler reaction. J Exp Bot 51:357–368. doi:10.1093/jexbot/51.suppl_1.357
CAS
PubMed
Article
Google Scholar
Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Ann Rev Plant Biol 63:19–47. doi:10.1146/annurev-arplant-042811-105511
CAS
Article
Google Scholar
Salvucci ME, Crafts-Brandner SJ (2004) Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiol 134:1460–1470. doi:10.1104/pp.103.038323
CAS
PubMed
PubMed Central
Article
Google Scholar
Sassenrath-Cole GF, Pearcy RW (1992) The role of ribulose-1,5-bisphosphate regeneration in the induction requirement of photosynthetic CO2 exchange under transient light conditions. Plant Physiol 99:227–234
CAS
PubMed
PubMed Central
Article
Google Scholar
Sassenrath-Cole GF, Pearcy RW (1994) Regulation of photosynthetic induction state by the magnitude and duration of low light exposure. Plant Physiol 105:1115–1123. doi:10.1104/pp.105.4.1115
CAS
PubMed
PubMed Central
Google Scholar
Scheibe R (2004) Malate valves to balance cellular energy supply. Physiol Plant 120:21–26. doi:10.1111/j.0031-9317.2004.0222.x
CAS
PubMed
Article
Google Scholar
Scheibe R, Backhausen JE, Emmerlich V, Holtgrefe S (2005) Strategies to maintain redox homeostasis during photosynthesis under changing conditions. J Exp Bot 56:1481–1489. doi:10.1093/jxb/eri181
CAS
PubMed
Article
Google Scholar
Schymanski SJ, Or D, Zwieniecki M (2013) Stomatal control and leaf thermal and hydraulic capacitances under rapid environmental fluctuations. PLoS One 8:e54231. doi:10.1371/journal.pone.0054231
CAS
PubMed
PubMed Central
Article
Google Scholar
Shikanai T, Endo T, Hashimoto T et al (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci USA 95:9705–9709
CAS
PubMed
PubMed Central
Article
Google Scholar
Sims DA, Pearcy RW (1993) Sunfleck frequency and duration affect growth-rate of the understorey plant, Alocasia macrorrhiza. Funct Ecol 7:683–689. doi:10.2307/2390189
Article
Google Scholar
Singsaas EL, Sharkey TD (1998) The regulation of isoprene emission responses to rapid leaf temperature fluctuations. Plant Cell Environ 21:1181–1188. doi:10.1046/j.1365-3040.1998.00380.x
CAS
Article
Google Scholar
Singsaas EL, Laporte MM, Shi JZ et al (1999) Leaf temperature fluctuation affects isoprene emission from red oak (Quercus rubra) leaves. Tree Physiol 19:917–924. doi:10.1093/treephys/19.14.917
CAS
PubMed
Article
Google Scholar
Smith H (1982) Light quality, photoperception, and plant strategy. Ann Rev Plant Physiol 33:481–518. doi:10.1146/annurev.pp.33.060182.002405
CAS
Article
Google Scholar
Sonoike K (2011) Photoinhibition of photosystem I. Physiol Plant 142:56–64. doi:10.1111/j.1399-3054.2010.01437.x
CAS
PubMed
Article
Google Scholar
Sonoike K, Terashima I (1994) Mechanism of photosystem-I photoinhibition in leaves of Cucumis sativus L. Planta 194:287–293. doi:10.1007/BF00196400
CAS
Article
Google Scholar
Streb P, Josse EM, Gallouet E, Baptist F, Kuntz M, Cornic G (2005) Evidence for alternative electron sinks to photosynthetic carbon assimilation in the high mountain plant species Ranunculus glacialis. Plant Cell Environ 28:1123–1135. doi:10.1111/j.1365-3040.2005.01350.x
CAS
Article
Google Scholar
Suetsugu N, Wada M (2007) Chloroplast photorelocation movement mediated by phototropin family proteins in green plants. Biol Chem 388:927–935. doi:10.1515/BC.2007.118
CAS
PubMed
Article
Google Scholar
Suorsa M, Järvi S, Grieco M et al (2012) PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. Plant Cell 24:2934–2948. doi:10.1105/tpc.112.097162
CAS
PubMed
PubMed Central
Article
Google Scholar
Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60. doi:10.1016/j.tplants.2010.10.001
CAS
PubMed
Article
Google Scholar
Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182. doi:10.1016/j.tplants.2008.01.005
CAS
PubMed
Article
Google Scholar
Takahashi S, Bauwe H, Badger M (2007) Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair process and not acceleration of damage process in Arabidopsis thaliana. Plant Physiol 144:487–494. doi:10.1104/pp.107.097253
CAS
PubMed
PubMed Central
Article
Google Scholar
Takahashi S, Milward SE, Fan DY, Chow WS, Badger MR (2009) How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol 149:1560–1567. doi:10.1104/pp.108.134122
CAS
PubMed
PubMed Central
Article
Google Scholar
Terashima I, Funayama S, Sonoike K (1994) The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photosystem II. Planta 193:300–306. doi:10.1007/BF00192544
CAS
Article
Google Scholar
Terashima I, Araya T, Miyazawa SI, Sone K, Yano S (2005) Construction and maintenance of the optimal photosynthetic systems of the leaf, herbaceous plant and tree: an eco-developmental treatise. Ann Bot 95:507–519. doi:10.1093/aob/mci049
CAS
PubMed
PubMed Central
Article
Google Scholar
Tikkanen M, Aro EM (2012) Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. Biochim Biophys Acta 1817:232–238. doi:10.1016/j.bbabio.2011.05.005
CAS
PubMed
Article
Google Scholar
Tikkanen M, Grieco M, Kangasjärvi S, Aro EM (2010) Thylakoid protein phosphorylation in higher plant chloroplasts optimizes electron transfer under fluctuating light. Plant Physiol 152:723–735. doi:10.1104/pp.109.150250
CAS
PubMed
PubMed Central
Article
Google Scholar
Tikkanen M, Mekala NR, Aro EM (2014) Photosystem II photoinhibition-repair cycle protects photosystem I from irreversible damage. Biochim Biophys Acta 1837:210–215. doi:10.1016/j.bbabio.2013.10.001
CAS
PubMed
Article
Google Scholar
Tikkanen M, Rantala S, Aro EM (2015) Electron flow from PSII to PSI under high light is controlled by PGR5 but not by PSBS. Front Plant Sci 6:521. doi:10.3389/fpls.2015.00521
PubMed
PubMed Central
Article
Google Scholar
Timm HC, Küppers M, Stegemann J (2004) Non-destructive analysis of architectural expansion and assimilate allocation in different tropical tree saplings: consequences of using steady-state and dynamic photosynthesis models. Ecotropica 10:101–121
Google Scholar
Trouillard M, Shahbazi M, Moyet L, Rappaport F, Joliot P, Kuntz M, Finazzi G (2012) Kinetic properties and physiological role of the plastoquinone terminal oxidase (PTOX) in a vascular plant. Biochim Biophys Acta 1817:2140–2148. doi:10.1016/j.bbabio.2012.08.006
CAS
PubMed
Article
Google Scholar
Valladares F, Allen MT, Pearcy RW (1997) Photosynthetic responses to dynamic light under field conditions in six tropical rainforest shrubs occurring along a light gradient. Oecologia 111:505–514. doi:10.1007/s004420050264
Article
Google Scholar
Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Annu Rev Plant Biol 54:455–468. doi:10.1146/annurev.arplant.54.031902.135023
CAS
PubMed
Article
Google Scholar
Watling JR, Ball MC, Woodrow IE (1997) The utilization of lightflecks for growth in four Australian rain-forest species. Funct Ecol 11:231–239. doi:10.1046/j.1365-2435.1997.00073.x
Article
Google Scholar
Way DA, Pearcy RW (2012) Sunflecks in trees and forests: from photosynthetic physiology to global change biology. Tree Physiol 32:1066–1081. doi:10.1093/treephys/tps064
PubMed
Article
Google Scholar
Way DA, Yamori W (2014) Thermal acclimation of photosynthesis: on the importance of definitions and accounting for thermal acclimation of respiration. Photosynth Res 119:89–100. doi:10.1007/s11120-013-9873-7
CAS
PubMed
Article
Google Scholar
Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004) Electron transport is the functional limitation of photosynthesis in field-grown pima cotton plants at high temperature. Plant Cell Environ 27:717–724. doi:10.1111/j.1365-3040.2004.01171.x
CAS
Article
Google Scholar
Yamamoto H, Shikanai T (2013) In planta mutagenesis of Src homology 3 domain-like fold of NdhS, a ferredoxin-binding subunit of the chloroplast NADH dehydrogenase-like complex in Arabidopsis. A conserved Arg-193 plays a critical role in ferredoxin binding. J Biol Chem 288:36328–36337. doi:10.1074/jbc.M113.511584
CAS
PubMed
PubMed Central
Article
Google Scholar
Yamamoto H, Peng L, Fukao Y, Shikanai T (2011) An Src homology 3 domain-like fold protein forms a ferredoxin-binding site for the chloroplast NADH dehydrogenase-like complex in Arabidopsis. Plant Cell 23:1480–1493. doi:10.1105/tpc.110.080291
CAS
PubMed
PubMed Central
Article
Google Scholar
Yamori W (2013) Improving photosynthesis to increase food and fuel production by biotechnological strategies in crops. J Plant Biochem Physiol 1:113. doi:10.4172/2329-9029.1000113
Google Scholar
Yamori W, Shikanai T (2016) Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol. doi:10.1146/annurev-arplant-043015-112002
PubMed
Google Scholar
Yamori W, von Caemmerer S (2009) Effect of Rubisco activase deficiency on the temperature response of CO2 assimilation rate and Rubisco activation state: insights from transgenic tobacco with reduced amounts of Rubisco activase. Plant Physiol 151:2073–2082. doi:10.1104/pp.109.146514
CAS
PubMed
PubMed Central
Article
Google Scholar
Yamori W, Noguchi K, Terashima I (2005) Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. Plant Cell Environ 28:536–547. doi:10.1111/j.1365-3040.2004.01299.x
CAS
Article
Google Scholar
Yamori W, Suzuki K, Noguchi K, Nakai M, Terashima I (2006) Effects of Rubisco kinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant Cell Environ 29:1659–1670. doi:10.1111/j.1365-3040.2006.01550.x
CAS
PubMed
Article
Google Scholar
Yamori W, Evans JR, von Caemmerer S (2010a) Effects of growth and measurement light intensities on temperature dependence of CO2 assimilation rate in tobacco leaves. Plant Cell Environ 33:332–343. doi:10.1111/j.1365-3040.2009.02067.x
CAS
PubMed
Article
Google Scholar
Yamori W, Noguchi K, Hikosaka K, Terashima I (2010b) Phenotypic plasticity in photosynthetic temperature acclimation among crop species with different cold tolerances. Plant Physiol 152:388–399. doi:10.1104/pp.109.145862
CAS
PubMed
PubMed Central
Article
Google Scholar
Yamori W, Sakata N, Suzuki Y, Shikanai T, Makino A (2011) Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. Plant J 68:966–976. doi:10.1111/j.1365-313X.2011.04747.x
CAS
PubMed
Article
Google Scholar
Yamori W, Masumoto C, Fukayama H, Makino A (2012) Rubisco activase is a key regulator of non steady-state photosynthesis at any leaf temperature and to a lesser extent, of steady-state photosynthesis at high temperature. Plant J 71:871–880. doi:10.1111/j.1365-313X.2012.05041.x
CAS
PubMed
Article
Google Scholar
Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4 and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119:101–117. doi:10.1007/s11120-013-9874-6
CAS
PubMed
Article
Google Scholar
Yamori W, Shikanai T, Makino A (2015) Photosystem I cyclic electron flow via chloroplast NADH dehydrogenease-like complex performs a physiological role for photosynthesis at low light. Sci Rep 5:13908. doi:10.1038/srep13908
PubMed
PubMed Central
Article
Google Scholar
Yamori W, Makino A, Shikanai T (2016a) A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. Sci Rep 6:20147. doi:10.1038/srep20147
CAS
PubMed
PubMed Central
Article
Google Scholar
Yamori W, Kondo E, Sugiura D et al (2016b) Enhanced leaf photosynthesis as a target to increase grain yield: insights from transgenic rice lines with variable Rieske FeS protein content in the cytochrome b6/f complex. Plant Cell Environ 39:80–87. doi:10.1111/pce.12594
CAS
PubMed
Article
Google Scholar
Yin ZH, Johnson GN (2000) Photosynthetic acclimation of higher plants to growth in fluctuating light environments. Photosynth Res 63:97–107. doi:10.1023/A:1006303611365
CAS
PubMed
Article
Google Scholar
Zhu XG, Portis AR, Long SP (2004) Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell Environ 27:155–165. doi:10.1046/j.1365-3040.2004.01142.x
CAS
Article
Google Scholar
Zhu XG, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261. doi:10.1146/annurev-arplant-042809-112206
CAS
PubMed
Article
Google Scholar