Journal of Plant Research

, Volume 129, Issue 4, pp 697–710 | Cite as

Relative DNA content in diploid, polyploid, and multiploid species of Paspalum (Poaceae) with relation to reproductive mode and taxonomy

  • Florencia Galdeano
  • M. H. Urbani
  • M. E. Sartor
  • A. I. Honfi
  • F. Espinoza
  • C. L. Quarin
Regular Paper


It is generally accepted that polyploids have downsized basic genomes rather than additive values with respect to their related diploids. Changes in genome size have been reported in correlation with several biological characteristics. About 75 % of around 350 species recognized for Paspalum (Poaceae) are polyploid and most polyploids are apomictic. Multiploid species are common with most of them bearing sexual diploid and apomictic tetraploid or other ploidy levels. DNA content in the embryo and the endosperm was measured by flow cytometry in a seed-by-seed analysis of 47 species including 77 different entities. The relative DNA content of the embryo informed the genome size of the accession while the embryo:endosperm ratio of DNA content revealed its reproductive mode. The genome sizes (2C-value) varied from 0.5 to 6.5 pg and for 29 species were measured for the first time. Flow cytometry provided new information on the reproductive mode for 12 species and one botanical variety and supplied new data for 10 species concerning cytotypes reported for the first time. There was no significant difference between the mean basic genome sizes (1Cx-values) of 32 sexual and 45 apomictic entities. Seventeen entities were diploid and 60 were polyploids with different degrees. There were no clear patterns of changes in 1Cx-values due to polyploidy or reproductive systems, and the existing variations are in concordance with subgeneric taxonomical grouping.


1Cx-value 2C-value Flow cytometry Relative DNA content 



We thank to Fritz Matzk and Timothy Sharbel for collaboration and assistance, IPK Gatersleben, Deutschland. Dr. Henry A. Fribourg, Professor Emeritus of Crop Ecology, University of Tennessee, USA, for his kind review of the manuscript for English style and grammar. This work was supported by Facultad de Ciencias Agrarias Universidad Nacional del Nordeste, Corrientes, Argentina, grant PI-A008-2013; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, grant PIP-11220080101378; Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT), Argentina, grant PICT2011-1802.


  1. Albach DC, Greilhuber J (2004) Genome size variation and evolution in Veronica. Ann Bot 94:897–911CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bashaw EC, Holt EC (1958) Megasporogenesis, embryo sac development and embryogenesis in Dallisgrass, Paspalum dilatatum Poir. Agron J 50:753–756CrossRefGoogle Scholar
  3. Bashaw EC, Hovin AW, Holt EC (1970) Apomixis, its evolutionary significance and utilization in plant breeding. In: Norman MJT (eds) Proceeding 11th International Grassland Congress. Surfers Paradise, Queensland. University of Queensland Press, St. Lucia, pp 245–248Google Scholar
  4. Bennett MD, Leitch IJ (2010) Plant DNA C-values Database (release 5-0, December 2010).
  5. Bennetzen JL, Kellog EA (1997) Do plants have a one-way ticket to genomic obesity? Plant Cell 9:1509–1514CrossRefPubMedPubMedCentralGoogle Scholar
  6. Blount AR, Acuña CA (2009) Bahiagrass. In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement, vol 5. CRC, Boca Raton, pp 81–101CrossRefGoogle Scholar
  7. Bonilla JR, Quarin CL (1997) Diplosporous and aposporous apomixis in a pentaploid race of Paspalum minus. Plant Sci 127:97–104CrossRefGoogle Scholar
  8. Brown WV, Emery WHP (1958) Apomixis in the Gramineae: Panicoideae. Amer J Bot 45:253–263CrossRefGoogle Scholar
  9. Burson BL (1975) Cytology of some apomictic Paspalum species. Crop Sci 15:229–232CrossRefGoogle Scholar
  10. Burson BL (1985) Cytology of Paspalum chacoense and P. durifolium and their relationship to P. dilatatum. Bot Gaz 146:124–129CrossRefGoogle Scholar
  11. Burson BL (1997) Apomixis and sexuality in some Paspalum species. Crop Sci 37:1347–1351CrossRefGoogle Scholar
  12. Burson BL, Bennett HW (1970a) Cytology, method of reproduction, and fertility of Brunswickgrass, Paspalum nicorae Parodi. Crop Sci 10:184–187CrossRefGoogle Scholar
  13. Burson BL, Bennett HW (1970b) Cytology and reproduction of three Paspalum species. J Hered 61:129–132CrossRefGoogle Scholar
  14. Burson BL, Bennett HW (1971a) Chromosome numbers, microsporogenesis, and mode of reproduction of seven Paspalum species. Crop Sci 11:292–294CrossRefGoogle Scholar
  15. Burson BL, Bennett HW (1971b) Meiotic and reproductive behavior of some introduced Paspalum species. J Missis Acad Sci 17:5–8Google Scholar
  16. Burson BL, Hussey MA (1998) Cytology of Paspalum malacophyllum and its relationship to P. juergensii and P. dilatatum. Int J Plant Sci 159:153–159CrossRefGoogle Scholar
  17. Burson BL, Quarin CL (1982) Cytology of Paspalum virgatum and its relationship with P.intermedium and P.jurgensii. Canad J Genet Cytol 24:219–226CrossRefGoogle Scholar
  18. Burson BL, Voigt PW, Evers GW (1991) Cytology, reproductive behavior, and forage potential of hexaploid dallisgrass biotypes. Crop Sci 31:636–641CrossRefGoogle Scholar
  19. Burton GW (1948) The method of reproduction in common Bahia grass, Paspalum notatum. J Amer Soc Agron 40:443–452CrossRefGoogle Scholar
  20. Burton GW (1967) A search for the origin of Pensacola bahia grass. Econ Bot 21:379–382CrossRefGoogle Scholar
  21. Burton GW, Forbes Jackson J (1970) Effect of ploidy on fertility and heterosis in Pensacola bahiagrass. Crop Sci 10:63–66CrossRefGoogle Scholar
  22. Caponio I, Quarin CL (1987) El sistema genético de Paspalum simplex y de un híbrido interespecífico con P. dilatatum. Kurtziana 19:35–45Google Scholar
  23. Caponio I, Quarin CL (1993) Cytology and reproduction of Paspalum densum and its genomic relationship with P. intermedium and P. urvillei. J Hered 84:220–222CrossRefGoogle Scholar
  24. Chase A (1929) The North American species of Paspalum. Contrib US Natl Herb 28:1–310Google Scholar
  25. Chase A (1939) Paspalum of South America. Hitchcock and Chase Library, Botany Department, Smithsonian Institution, Washington, D.C. Unpublished manuscriptGoogle Scholar
  26. Chrtek J Jr, Zahradníček J, Krak K, Fehrer J (2009) Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phylogenetic groups. Ann Bot 104:161–178CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dahmer N, Schifino-Wittmann MT, Dall´Agnol M, de Castro B (2008) Cytogenetic data for Paspalum notatum Flügge accessions. Sci Agric 65:381–388CrossRefGoogle Scholar
  28. Daurelio LD, Espinoza F, Quarin CL, Pessino SC (2004) Genetic diversity in sexual diploid and apomictic tetraploid populations of Paspalum notatum situated in sympatry or allopatry. Plant Syst Evol 244:189–199CrossRefGoogle Scholar
  29. Delgado L, Galdeano F, Sartor ME, Quarin CL, Ortiz JPA (2014) Analysis of variation for apomictic reproduction in diploid Paspalum rufum. Ann Bot 113:1211–1218CrossRefPubMedPubMedCentralGoogle Scholar
  30. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo C, W InfoStat versión (2014) Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.
  31. Enke N, Fuchs J, Gemeinholzer B (2011) Shrinking genomes? Evidence from genome size variation in Crepis (Compositae). Plant Biol 13:185–193CrossRefPubMedGoogle Scholar
  32. Espinoza F, Quarin CL (1997) Cytoembyology of Paspalum chaseanum and sexual diploid biotypes of two apomictic Paspalum species. Aust J Bot 45:871–877CrossRefGoogle Scholar
  33. Espinoza F, Urbani MH, Martínez EJ, Quarin CL (2001) The breeding system of three Paspalum species with forage potential. Trop Grass 35:211–217Google Scholar
  34. Evers GW, Burson BL (2004) Dallisgrass and other Paspalum species. In: Moser LE, Burson BL, Sollenberger LE (eds) Warm season (C4) grasses. Agron Monogr 45. ASA, CSSA, SSSA, Madison, WI, pp 681–713Google Scholar
  35. Forbes I, Burton GW (1961) Induction of tetraploidy and a rapid field method of detecting induced tetraploidy in Pensacola bahiagrass. Crop Sci 1:383CrossRefGoogle Scholar
  36. Greilhuber J, Doležel J, Lysa MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘genome size’ and C-value to describe nuclear DNA contents. Ann Bot 95:255–260CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hayman DL (1956) Cytological evidence of apomixis in Australian Paspalum dilatatum. J Aust Inst Agric Sci 22:292–293Google Scholar
  38. Hojsgaard D, Shegg E, Valls JFM, Martinez EJ, Quarin CL (2008) Sexuality, apomixis, ploidy levels, and genomic relationships among four Paspalum species of the subgenus Anachyris (Poaceae). Flora 203:535–547CrossRefGoogle Scholar
  39. Jarret RL, Ozias-Akins P, Phatak S, Nadimpalli R, Duncan R, Hiliard S (1995) DNA contents in Paspalum spp. determined by flow cytometry. Gen Resour Crop Evol 42:237–242CrossRefGoogle Scholar
  40. Johnston JS, Bennett MD, Rayburn AL, Galbraith DW, Price HJ (1999) Reference standars for determination of DNA content of plant nuclei. Am J Bot 86:609–613CrossRefPubMedGoogle Scholar
  41. Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663CrossRefGoogle Scholar
  42. Martínez EJ, Urbani MH, Quarin CL, Ortiz JP (2001) Inheritance of apospory in bahiagrass, Paspalum notatum. Hereditas 135:19–25CrossRefPubMedGoogle Scholar
  43. Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21:97–108CrossRefPubMedGoogle Scholar
  44. Matzk F, Meister A, Brutovská R, Schubert I (2001) Reconstruction of reproductive diversity in Hypericum perforatum L. opens novel strategies to manage apomixes. Plant J. 26:275–282CrossRefPubMedGoogle Scholar
  45. Matzk F, Hammer K, Schubert I (2003) Coevolution of apomixis and genome size within the genus Hypericum. Sex Plant Rep 16:51–58CrossRefGoogle Scholar
  46. Norrmann GA (1981) Citología y método de reproducción en dos especies de Paspalum (Graminieae). Bonplandia 5:149–158Google Scholar
  47. Norrmann GA, Quarin CL, Burson BL (1989) Cytogenetics and reproductive behavior of different chromosome races in six Paspalum species. J Hered 80:24–28CrossRefGoogle Scholar
  48. Norrmann GA, Quarin CL, Killeen TJ (1994) Chromosome numbers in Bolivian grasses (Gramineae). Ann Mo Bot Gard 81:768–774CrossRefGoogle Scholar
  49. Novo PE, Espinoza F, Quarin CL (2013) An apomictic tetraploid Paspalum chaseanum cytotype and its cytogenetic relationship with P. plicatulum (Poaceae): taxonomic and genetic implications. Austr J Bot 61:538–543CrossRefGoogle Scholar
  50. Ortiz JPA, Quarin CL, Pessino SC, Acuña C, Martínez EJ, Espinoza F, Hojsgaard DH, Sartor ME, Cáceres ME, Pupilli F (2013) Hamessing apomictic reproduction in grasses what we have leamed from Paspalum. Ann Bot 112:767–787CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pritchard AJ (1970) Meiosis and embryo sac development in Urochloa mosambicensis and three Paspalum species. Austr J Agric Res 21:648–652CrossRefGoogle Scholar
  52. Pupilli F, Cáceres ME, Quarin CL, Arcioni S (1997) Segregation analysis of RFLP markers reveals a tetrasomic inheritance in apomictic Paspalum simplex. Genome 40:822–828CrossRefPubMedGoogle Scholar
  53. Quarin CL (1992) The nature of apomixis and its origin in Panicoid grasses. Apo News 5:8–15Google Scholar
  54. Quarin CL (1994) A tetraploid cytotype of Paspalum durifolium: cytology, reproductive behavior and its relationship to diploid P. intermedium. Hereditas 121:115–118CrossRefGoogle Scholar
  55. Quarin CL, Burson BL (1991) Cytology of sexual and apomictic Paspalum species. Cytologia 56:223–228CrossRefGoogle Scholar
  56. Quarin CL, Caponio I (1995) Cytogenetics and reproduction of Paspalum dasypleurum and its hybrids with P. urvillei and P. dilatatum ssp. flavescens. Int J Plant Sci 156:232–235CrossRefGoogle Scholar
  57. Quarin CL, Hanna WW (1980a) Effect of three ploidy levels on meiosis and mode of reproduction in Paspalum hexastachyum. Crop Sci 20:69–75CrossRefGoogle Scholar
  58. Quarin CL, Hanna WW (1980b) Chromosome behavior, embryo sac development, and fertility of Paspalum modestum, P. boscianum, and P. conspersum. J Hered 71:419–422CrossRefGoogle Scholar
  59. Quarin CL, Norrmann GA (1987) Cytology and reproductive behavior of Paspalum equitans, P. ionanthum, and their hybrids with diploid and tetraploid cytotypes of P. cromyorrhizon. Bot Gaz 148:386–391CrossRefGoogle Scholar
  60. Quarin CL, Hanna WW, Fernández A (1982) Genetic studies in diploid and tetraploid Paspalum species. Embryo sac development, chromosome behavior, and fertility in P. cromyorrhizon, P. laxum, and P. proliferum. J Hered 73:254–256CrossRefGoogle Scholar
  61. Quarin CL, Burson BL, Burton GW (1984) Cytology of Intra and interspecific hybrids between two cytotypes of Paspalum notatum and P. cromyorrhizon. Bot Gaz 145:420–426CrossRefGoogle Scholar
  62. Quarin CL, Valls JFM, Urbani MH (1997) Cytological and reproductive behaviour of Paspalum atratum, a promising forage grass for the tropics. Trop Grassl 31:114–116Google Scholar
  63. Quarin CL, Norrmann GA, Espinoza F (1998) Evidence for autopoliploidy in apomictic Paspalum rufum. Hereditas 129:119–124CrossRefGoogle Scholar
  64. Quarin CL, Espinoza F, Martinez EJ, Pessino SC, Bovo OA (2001) A rise of ploidy level induces the expression of apomixis in Paspalum notatum. Sex Plant Reprod 13:243–249CrossRefGoogle Scholar
  65. Rua GH, Speranza PR, Vaio M, Arakaki M (2010) A phylogenetic analysis of the genus Paspalum (Poaceae) based on cpDNA and morphology. Plant Syst Evol 288:227–243CrossRefGoogle Scholar
  66. Sartor ME, Quarin CL, Urbani MH, Espinoza F (2011) Ploidy levels and reproductive behavior in natural populations of five Paspalum species. Plant Syst Evol 293:31–41CrossRefGoogle Scholar
  67. Savidan Y (2007) Apomixis in higher plants. In: Hörandl E, Grossnicklaus U, Van Dijk PJ, Sharbel TF (eds) Apomixis: evolution, mechanisms and perspectives. ARG-Gantner, Ruggell, pp 15–22Google Scholar
  68. Siena LA, Sartor ME, Espinoza F, Quarin CL, Ortiz JPA (2008) Genetic and embryological evidences of apomixis at the diploid level in Paspalum rufum support recurrent autopolyploidization in the species. Sex Plant Reprod 21:205–215CrossRefGoogle Scholar
  69. Smith BW (1948) Hybridity and apomixis in the perennial grass, Paspalum dilatatum. Genetics 33:628–629PubMedGoogle Scholar
  70. Stein J, Quarin CL, Martínez EJ, Pessino SC, Ortiz JPA (2004) Tetraploid races of Paspalum notatum show polysomic inheritance and preferential chromosome pairing around the apospory-controling locus. Theor Appl Genet 109:186–191CrossRefPubMedGoogle Scholar
  71. Swift H (1950) The constancy of desoxyribose nucleic acid in plant nuclei. Proc Natl Acad Sci USA 36:643–654CrossRefPubMedPubMedCentralGoogle Scholar
  72. Urbani MH, Quarin CL, Espinoza F, Penteado MIO, Rodrigues IF (2002) Cytogeography and reproduction of the Paspalum simplex polyploid complex. Plant Syst Evol 236:99–105CrossRefGoogle Scholar
  73. Vaio M, Mazzella C, Porro V, Speranza P, López-Carro B, Estramil E, Folle GA (2007) Nuclear DNA content in allopolyploid species and synthetic hybrids in the grass genus Paspalum. Plant Syst Evol 265:109–121CrossRefGoogle Scholar
  74. Yamauchi A, Hosokawa A, Nagata H, Shimoda M (2004) Triploid bridge and the role of parthenogenesis in the evolution of autoploidy. Am Nat 164:101–112CrossRefPubMedGoogle Scholar
  75. Zilli AL, Hojsgaard DH, Brugnoli EA, Acuña CA, Honfi AI, Urbani MH, Quarin CL, Martínez EJ (2014) Genetic relationship among Paspalum species of the subgenus Anachyris: Taxonomic and evolutionary implications. Flora. 209:604–612CrossRefGoogle Scholar
  76. Zuloaga FO, Morrone O (2005) Revisión de las especies de Paspalum para América del Sur Austral (Argentina, Bolivia, Sur de Brasil, Chile, Paraguay y Uruguay). Monogr Syst Bot Mo Bot Gar 102:1–297Google Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Florencia Galdeano
    • 1
  • M. H. Urbani
    • 1
  • M. E. Sartor
    • 1
  • A. I. Honfi
    • 2
  • F. Espinoza
    • 1
  • C. L. Quarin
    • 1
  1. 1.Instituto de Botánica del Nordeste, CONICET-UNNE, Facultad de Ciencias AgrariasFCA-UNNECorrientesArgentina
  2. 2.Instituto de Biología Subtropical, CONICET-UNaM, Facultad de Ciencias Exactas, Químicas y NaturalesUNaMPosadasArgentina

Personalised recommendations