Journal of Plant Research

, Volume 129, Issue 4, pp 685–695 | Cite as

A study on calcium oxalate crystals in Tinantia anomala (Commelinaceae) with special reference to ultrastructural changes during anther development

  • Joanna Gębura
  • Krystyna Winiarczyk
Regular Paper


Calcium oxalate (CaOx) crystals in higher plants occur in five forms: raphides, styloids, prisms, druses, and crystal sand. CaOx crystals are formed in almost all tissues in intravacuolar crystal chambers. However, the mechanism of crystallization and the role of CaOx crystals have not been clearly explained. The aim of this study was to explore the occurrence and location of CaOx crystals in organs of Tinantia anomala (Torr.) C.B. Clarke (Commelinaceae) with special attention to ultrastructural changes in the quantity of tapetal raphides during microsporogenesis. We observed various parts of the plant, that is, stems, leaves, sepals, petals, anthers, staminal trichomes and stigmatic papillae and identified CaOx crystals in all parts except staminal trichomes and stigmatic papillae in Tinantia anomala. Three morphological forms: styloids, raphides and prisms were found in different amounts in different parts of the plant. Furthermore, in this species, we identified tapetal raphides in anthers. The number of tapetal raphides changed during microsporogenesis. At the beginning of meiosis, the biosynthesis of raphides proceeded intensively in the provacuoles. These organelles were formed from the endoplasmic reticulum system. In the tetrad stage, we observed vacuoles with needle-shaped raphides (type I) always localised in the centre of the organelle. When the amoeboid tapetum was degenerating, vacuoles also began to fade. We observed a small number of raphides in the stage of mature pollen grains.


Anther Calcium oxalate crystals Microsporogenesis Raphides Tapetum 


  1. Arnott HJ, Webb MA (1999) Twinned raphides of calcium oxalate in grape (Vitis): implications for crystal stability and function. Int J Plant Sci 161:133–142CrossRefGoogle Scholar
  2. Bednarska E, Butowt R (1994) Calcium in pollen-pistil interaction in Petunia hybrida Hort. Folia Histochem Cytochem 33:43–52Google Scholar
  3. Bremer K (1994) Asteraceae: Cladistics and classification. Timber Press, PortlandGoogle Scholar
  4. Buvat R (1989) Ontogeny, cell differentiation, and structure of vascular plants. Springer-Verlag, Heidelberg, pp 481–482CrossRefGoogle Scholar
  5. Carniel K (1952) Das Verhalten der Kernc in Tapetum der Angi-spermen mit bcsonderer Berucksichtigung yo11 endomitosen und sogenannten Endomitosen. Osterr Bot Zeitschrift 99:318–362CrossRefGoogle Scholar
  6. Chase MW, Stevenson DW, Wilkin P, Rudall P (1995) Monocot systematics: combined analysis. In: Rudall P, Crihb P, Cutler D, Humphries C (eds) Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew, pp 685–730Google Scholar
  7. Coté GG (2009) Diversity and distribution of idioblasts producing calcium oxalate crystals in Dieffenbachia seguine (Araceae). Am J Bot 96:1245–1254CrossRefPubMedGoogle Scholar
  8. Crowther A (2009) Reviewing raphides: issues with the identification and interpretation of calcium oxalate crystals in microfossil assemblages. In: Fairbairn A, O’Connor S, Marwick B (eds) New directions in archaeological science. Terra Australis:28. ANU E-Press, Canberra, pp 105–118Google Scholar
  9. D’Arcy WG, Keating RC, Buchmann SL (1996) The calcium oxalate package or so-called resorption tissue in some angiosperm anthers. In: D’Arcy WG, Keating RC (eds) The anther: form, function, and phylogeny. Cambridge University Press, Cambridge, pp 159–191Google Scholar
  10. Foster AS (1956) Plant idioblasts: remarkable examples of cell specialization. Protoplasma 46:184–193CrossRefGoogle Scholar
  11. Franceschi VR, Horner HT (1980) Calcium oxalate crystals in plants. Bot Rev 46:361–427CrossRefGoogle Scholar
  12. Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol 56:41–71CrossRefPubMedGoogle Scholar
  13. Hamann U (1966) Embryologische, morphologisch-anatomische und systematische Untersuchungen an Philydraceen. Willdenowia Beiheft 4:1–178Google Scholar
  14. Hardy CR, Stevenson DW (2000) Development of the gametophytes, flower and floral vasculature in Cochliostema odoratissimum (Commelinaceae). Bot J Linn Soc 134:131–157Google Scholar
  15. Hardy CR, Stevenson DW, Kiss HG (2000) Development of the gametophytes, flower, and floral vasculature in Dichorisandra thyrsiflora (Commelinaceae). Am J Bot 87:1228–1239CrossRefPubMedGoogle Scholar
  16. Hayat MA (2000) Principles and techniques of electron microscopy for biological applications, 4th edn. Cambridge University Press, New YorkGoogle Scholar
  17. He H, Veneklaas EJ, Kuo J, Lambers H (2014) Physiological and ecological significance of biomineralization in plants. Trends Plant Sci 19:166–174CrossRefPubMedGoogle Scholar
  18. Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155CrossRefPubMedPubMedCentralGoogle Scholar
  19. Horner HT (1977) A comparative light- and electron-microscopic study of microsporogenesis in male-fertile and cytoplasmic male-sterile sunflower (Helianthus annuus). Am J Bot 64:745–759CrossRefGoogle Scholar
  20. Horner HT, Wagner BL (1995) Calcium oxalate formation in higher plants. In: Khan SR (ed) Calcium oxalate in biological systems. CRC Press, Boca Raton, pp 53–72Google Scholar
  21. Ilarslan H, Palmer RG, Horner HT (2001) Calcium oxalate crystals in developing seeds of soybean. Ann Bot 88:243–257CrossRefGoogle Scholar
  22. Iwano ML, Entani T, Shiba H, Takayama S, Isogai A (2004) Calcium crystals in the anther of Petunia: the existence and biological significance in the pollination process. Plant Cell Physiol 45:40–47CrossRefPubMedGoogle Scholar
  23. Kauss H (1987) Some aspects of calcium dependent regulation in plant metabolism. Ann Rev PI Physiol 38:47–72CrossRefGoogle Scholar
  24. Khan AS, Siddiqi R (2014) Environmental factors affect calcium oxalate crystals formation Tradescantia pallida (Commelinaceae). Pak J Bot 46:477–482Google Scholar
  25. Kinzel H (1989) Calcium in the vacuoles and cell walls of plant tissue: forms of deposition and their physiological and ecological significance. Flora 182:99–125CrossRefGoogle Scholar
  26. Kohno T, Shimmen T (1987) Ca 2+-induced fragmentation of actin filaments in pollen tubes. Protoplasma 141:177–179CrossRefGoogle Scholar
  27. Kostman TA, Tarlyn NM, Loewus FA, Franceschi VR (2001) Biosynthesis of L-ascorbic acid and conversion of carbons 1 and 2 of L-ascorbic acid to oxalic acid occurs within individual calcium oxalate crystal idioblasts. Plant Physiol 125:634–640CrossRefPubMedPubMedCentralGoogle Scholar
  28. Maheshwari P, Singh B (1934) A preliminary note on the morphology of the aerial and underground flowers of Commelina benghalensis. Linn Curr Sci 3:158–160Google Scholar
  29. Mascre M (1925) Sur l’evolution de l’etamine des Commelinacees. Bulletin Soc Bot de France 72:1060–1066CrossRefGoogle Scholar
  30. Meric C, Dane F (2004) Calcium oxalate crystals in floral organs of Helianthus annuus L. and H. tuberosus L. (Asteraceae). Acta Biol Szeged 48:19–23Google Scholar
  31. Molano-Flores B (2001) Herbivory and calcium concentrations affect calcium oxalate crystal formation in leaves of Sida (Malvaceae). Ann Bot 88:387–391CrossRefGoogle Scholar
  32. Nakata PA (2003) Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci 164:901–909CrossRefGoogle Scholar
  33. Nakata PA, McConn MM (2000) Isolation of Medicago truncatula mutants defective in calcium oxalate crystal formation. Plant Physiol 124:1097–1104CrossRefPubMedPubMedCentralGoogle Scholar
  34. Nanda K, Gupta SC (1977) Development of tapetal periplasmodium in Rheo spathacea. Mod Phytomorphol 27:308–314Google Scholar
  35. Pacini E (1997) Tapetum character states: analytical keys for tapetum types and activities. Can J Bot 75:1448–1459CrossRefGoogle Scholar
  36. Pacini E, Juniper BE (1983) The ultrastructure of the formation and development of the amoeboid tapetum in Arum italicum Miller. Protoplasma 117:116–129CrossRefGoogle Scholar
  37. Prychid ChJ, Rudall PJ (1999) Calcium oxalate crystals in monocotyledons: a review of their structure and systematics. Ann Bot 84:725–739CrossRefGoogle Scholar
  38. Prychid ChJ, Furness CA, Rudall PJ (2003) Systematic significance of cell inclusions in Haemodoraceae and allied families: silica bodies and tapetal raphides. Ann Bot 92:571–580CrossRefPubMedPubMedCentralGoogle Scholar
  39. Prywer J (2009) Theoretical analysis of specific evolution of some faces of plant COM crystals. Cryst Eng Comm 11:196–202CrossRefGoogle Scholar
  40. Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glossary of pollen and spore terminology. Rev Palaeobot Palynol 143:1–81CrossRefGoogle Scholar
  41. Raman V, Horner HT, Khan IA (2014) New and unusual forms of calcium oxalate raphide crystals in the plant kingdom. J Plant Res 127:721–730CrossRefPubMedPubMedCentralGoogle Scholar
  42. Simpson MG (1988) Embryological development of Lachnantches caroliniana (Haemodoraceae). Am J Bot 75:1394–1408CrossRefGoogle Scholar
  43. Stejskal-Streit V (1940) Vergleichende Untersuchungen gehemmter Staublatter. Osterr Bot Z 89:1–56CrossRefGoogle Scholar
  44. Stevenson DW, Owens SJ (1978) Some aspects of the reproductive morphology of Gibasis venustula (Kunth) DR Hunt (Commelinaceae). Bot J Linn Soc 77:157–175CrossRefGoogle Scholar
  45. Tian GW, Shen JH (1991) Embryology of Astragalus mongholicus Bunge. Acta Bot Sinica 33:19–25Google Scholar
  46. Tirlapur UK, Willemse MTM (1992) Changes in calcium and calmodulin levels during microsporogenesis, pollen development and germination in Gasteria verrucosa (Mill.)H. Duval. Sex Plant Reprod 5:214–223Google Scholar
  47. Tomlinson PB (1966) Anatomical data in the classification of Commelinaceae. Bot J Linn Soc 59:371–395CrossRefGoogle Scholar
  48. Tomlinson PB (1969) Commelinales-Zingiberales. In: Metcalfe CR (ed) Anatomy of the monocotyledons III. Clarendon Press, OxfordGoogle Scholar
  49. Tütüncü KS, Öztürk N, Feruzan D (2014) Occurrence, types and distribution of calcium oxalate crystals in leaves and stems of some species of poisonous plants. Bot Stud 55:32CrossRefGoogle Scholar
  50. Vogel S (1978) Evolutionary shifts from reward to deception in pollen flowers. In: Richards AJ (ed) The pollination of flowers by insects. Linnaean Society Symposium Series No. 6, New York, pp 89–104Google Scholar
  51. Walker GWR (1957) The effects of colchicine on microsporogenesis in cultured anthers of Tradescantia paludosa. Am J Bot 44:690–696CrossRefGoogle Scholar
  52. Webb MA (1999) Cell-mediated crystallization of calcium oxalate in plants. Plant Cell 11:751–761CrossRefPubMedPubMedCentralGoogle Scholar
  53. Willemse MTM (1993) Calcium and calmodulin distribution in the tapetum of Gasteria verrucosa during anther development. In: Hesse M, Paccini E, Willemse M (eds) The tapetum: cytology, function, biochemistry and evolution. Springer-Verlag, New York, pp 107–116CrossRefGoogle Scholar
  54. Zindler-Frank E (1976) Oxalate biosynthesis in relation to photosynthetic pathway and plant productivity-a survey. Z Pflanzenphysiol 80:1–13CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Plant Anatomy and CytologyMaria Curie-Skłodowska UniversityLublinPoland

Personalised recommendations