Allen WA, Richardson AJ (1968) Interaction of light with a plant canopy. J Opt Soc Am 58:1023–1031
Article
Google Scholar
Anderson JM (1986) Photoregulation of the compositeon, function, and structure of thylakoid membranes. Annu Rev Plant Physiol 37:93–136
CAS
Article
Google Scholar
Biel KY, Fomina IR, Nazarova GN, Soukhovolsky VG, Khleboporos RG, Nishio JN (2010) Untangling metabolic spatial interactions of stress tolerance in plants. 1. Patterns of carbon metabolism within leaves. Protoplasma 245:49–73. doi:10.1007/s00709-010-0135-7
CAS
Article
PubMed
Google Scholar
Bornmann JF, Vogelmann TC, Martin G (1991) Measurements of chlorophyll fluorescence within leaves using a fiber optic microprobe. Plant Cell Environ 14:719–725
Article
Google Scholar
Brodersen CR, Vogelmann TC (2010) Do changes in light direction affect absorption profiles in leaves? Funct Plant Biol 37:403–412
Article
Google Scholar
Brodersen CR, Vogelmann TC, Williams WE, Gorton HL (2008) A new paradigm in leaf-level photosynthesis: direct and diffuse lights are not equal. Plant Cell Environ 31:159–164. doi:10.1111/j.1365-3040.2007.01751.x
CAS
PubMed
Google Scholar
Brugnoli E, Björkman O (1992) Chloroplast movements in leaves: influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation. Photosynth Res 32:23–35
CAS
Article
PubMed
Google Scholar
Clayton RK (1970) Light and living matter, vol 1. The physical part, McGraw-Hill, New York, p 148
Cui M, Vogelmann TC, Smith WK (1991) Chlorophyll and light gradients in sun and shade leaves of Spinacia oleracea. Plant Cell Environ 14:493–500
Article
Google Scholar
Evans JR, Vogelmann TC (2003) Profiles of 14C fixation through spinach leaves in relation to light absorption and photosynthetic capacity. Plant Cell Enviro 26:547–560
CAS
Article
Google Scholar
Evans JR, Vogelmann TC (2006) Photosynthesis within isobilateral Eucalyptus pauciflora leaves. New Phytol 171:771–782
CAS
Article
PubMed
Google Scholar
Evans JR, Jakobsen I, Ögren E (1993) Photosynthetic light-response curves. 2. Gradients of light absorption and photosynthetic capacity. Planta 189:191–200
CAS
Article
Google Scholar
Farquhar GD (1989) Models of integrated photosynthesis of cells and leaves. Phil Trans R Soc London B 323:357–367
CAS
Article
Google Scholar
Field C (1983) Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program. Oecologia 56:41–347. doi:10.1007/BF00379710
Article
Google Scholar
Gal A, Brumfeld V, Weiner S, Addadi L, Oron D (2012) Certain biomenerals in leaves function as light scatterers. Adv Opt Mater 24:OP77–OP83. doi:10.1002/adma.201104548
CAS
Google Scholar
Gates DM (1980) Biophysical ecology. Springer Verlag, New York, p 611
Book
Google Scholar
Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92
CAS
Article
Google Scholar
Gorton HL, Williams WE, Vogelmann TC (1999) Chloroplast movement in Alocassia macrorrhiza. Physiol Plant 106:421–428
CAS
Article
Google Scholar
He J, Yang W, Qin L, Fan D-Y, Chow WS (2015) Photoinactivation of photosystem II in wild-type and chlorophyll b-less barley leaves: which mechanism dominates depends on experimental circumstances. Photosynth Res 126:399–407. doi:10.1007/s11120-015-0164-0
CAS
Article
PubMed
Google Scholar
Higa T, Wada M (2016) Chloroplast avoidance movement is not functional in plants grown under strong sunlight. Plant Cell Environ. doi:10.1111/pce.12681
PubMed
Google Scholar
Hirose T, Werger MJA (1987) Maimizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia 72:520–526
Article
Google Scholar
Inoue Y, Shibata K (1973) Light-induced chloroplast rearrangents and their action spectra as measured by absorption spectrophotometry. Planta 114:341–358
CAS
Article
PubMed
Google Scholar
Inoue Y, Shibata K (1974) Comparative examination of terrestrial plant leaves in terms of light-induced absorption changes due to chloroplast rearrangements. Plant Cell Physiol 15:717–721
Google Scholar
Johnson DM, Smith SK, Vogelmann TC, Brodersen CR (2005) Leaf architecture and direction of incident light influence mesophyll fluorescence profiles. Amer J Bot 92:1425–1431
Article
Google Scholar
Karabourniotis G, Bornman JF, Nikolopoulos D (2000) A possible optical role of the bundle sheath extensions of the heterobaric leaves of Vitis vinifera and Qeurcus coccifera. Plant Cell Environ 23:423–430
Article
Google Scholar
Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832. doi:10.1038/nature01213
CAS
Article
PubMed
Google Scholar
Koizumi M, Takahashi K, Mineuchi K, Nakamura T, Kano H (1998) Light gradients and the transverse distribution of chlorophyll fluorescence in mangrove and Camellia leaves. Ann Bot 81:527–533
CAS
Article
Google Scholar
Kubelka VP, Munk F (1931) Ein Beitrag zur Optik der Farbanstriche. Z Tech Physik 11:593–601
Google Scholar
Kulandaivelu GA, Nooruden AM, Sampath PS, Pyriyana S, Rama K (1983) Assessment of the photosynthetic electron transport properties of upper and lower leaf sides in vivo by fluorometric method. Photosynthetica 17:206–209
Google Scholar
Losciale P, Oguchi R, Hendrickson L, Hope AB, Corelli-Grappadelli L, Chow WS (2008) A rapid, whole-tissue determination of the functional fraction of PSII after photoinhibition of leaves based on flash-induced P700 redox kinetics. Physiol Plant 132:23–32. doi:10.1111/j.1399-3054.2007.01000.x
CAS
PubMed
Google Scholar
Moss DN (1964) Optimum lighting of leaves. Crop Sci 4:131–136
Article
Google Scholar
Nikolopoulos D, Liakopoulos G, Drossopoulos I, Karabourniotsis G (2002) The relationship between anatomy and photosynthetic performance of heterobaric leaves. Plant Physiol 129:235–243
CAS
Article
PubMed
PubMed Central
Google Scholar
Nishio JN (2000) Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. Plant Cell Environ 23:539–548
CAS
Article
Google Scholar
Nishio JN, Sun J, Vogelmann TC (1993) Carbon fixation gradients across spinach leaves do not follow internal light gradient. Plant Cell 5:953–961
CAS
Article
PubMed
PubMed Central
Google Scholar
Ögren E, Evans JR (1993) Photosynthetic light-response curves. 1. The influence of CO2 partial pressure and leaf inversion. Planta 189:182–190
Article
Google Scholar
Oguchi R, Hikosaka K, Hirose T (2003) Does the photosynthetic light-acclimation need change in leaf anatomy? Plant Cell Environ 26:505–512
Article
Google Scholar
Oguchi R, Hikosaka K, Hirose T (2005) Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant Cell Environ 28:916–927
Article
Google Scholar
Oguchi R, Hikosaka K, Hiura T, Hirose T (2006) Leaf anatomy and light acclimateion in woody seedlings after gap formation in a cool-temperate deciduous forest. Oecologia 149:571–582
CAS
Article
PubMed
Google Scholar
Oguchi R, Terashima I, Chow WS (2009) The involvement of dual mechanisms of photoinactivation of photosystem II in Capsicum annuum L. plants. Plant Cell Physiol 50:1815–1825. doi:10.1093/pcp/pcp123
CAS
Article
PubMed
Google Scholar
Oguchi R, Douwstra P, Fujita T, Chow WS, Terashima I (2011a) Intra-leaf gradients of photoinhibition induced by different color lights: implication s for the dual mechanisms of photoinhibition and for the application of conventional chlorophyll fluorometers. New Phytol 191:146–159. doi:10.1111/j.1469-8137.2011.03669.x
Article
PubMed
Google Scholar
Oguchi R, Terashima I, Kou J, Chow WS (2011b) Operation of dual mechanisms that both lead to phoinactivation of photosystem II in leaves by visible light. Physiol Plant 142:47–55. doi:10.1111/j.1399-5054.2011.04152.x
CAS
Article
PubMed
Google Scholar
Oja VM, Laisk AK (1976) Adaptation of the photosynthesis apparatus to the light profile in the leaf. Soviet Plant Physiol 23:381–386
Google Scholar
Richter T, Fukshansky L (1996a) Optics of a bifacial leaf: 1. A novel combined procedure for deriving the optical parameters. Photochem Photobiol 63:507–516
CAS
Article
Google Scholar
Richter T, Fukshansky L (1996b) Optics of a bifacial leaf: 2. Light regime as affected by leaf structure and the light source. Photochem Photobiol 63:517–527
CAS
Article
Google Scholar
Sage TL, Sage RF (2009) The functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice. Plant Cell Physiol 50:756–772. doi:10.1093/pcp/pcp033
CAS
Article
PubMed
Google Scholar
Schanderl H, Kaempfert W (1933) Über die Strahlungdruchlässigkeit von Blättern und Blattgeweben. Planta 18:700–750
CAS
Article
Google Scholar
Schreiber U, Fink R, Vidaver W (1977) Fluorescence induction in whole leaves: differentiation between the two leaf sides and adaptation to different light regimes. Planta 133:121–129
CAS
Article
PubMed
Google Scholar
Schreiber U, Kühl M, Klimant I, Reising H (1996) Measurement of chlorophyll fluorescence within leaves using a modified PAM fluorometer with a fiber-optic microprobe. Photosynth Res 47:103–109
CAS
Article
PubMed
Google Scholar
Seyfried M, Fukshansky L (1983) Light gradients in plant tissue. Appl Opt 22:1402–1408. doi:10.1364/AO.22.001402
CAS
Article
PubMed
Google Scholar
Skene D (1974) Chloroplast structure in mature apple leaves grown under different levels of illumination and their response to changed illumination. Proc R Soc Lond B 186:75–78
Article
Google Scholar
Suetsugu N, Wada M (2012) Chloroplast photorelocation movement: a sophisticated strategy for chloroplasts to perform efficient photosynthesis. In: Najafpour M (ed) Advances in photosynthesis-fundamental aspects. InTech, Shanghai, pp 215–234. ISBN 978-953-307-928-8
Google Scholar
Sun J, Nishio JN (2001) Why abaxial illumination limits photosynthesis carbon fixation in spinach leaves. Plant Cell Physiol 42:1–8
CAS
Article
PubMed
Google Scholar
Sun J, Nishio JN, Vogelmann TC (1998) Green light drives CO2 fixation deep within leaves. Plant Cell Physiol 39:1020–1026
CAS
Article
Google Scholar
Syvertsen JP, Cunningham GL (1979) The effects of irradiating adaxial or abaxial leaf surface on the rate of net photosynthesis of Perecia nana and Helianths annuus. Photosynthetica 13:287–293
Google Scholar
Takahashi K, Mineuchi K, Nakamura T, Koizumi M, Kano H (1994) A system for imaging transverse distribution of scattered light and chlorophyll fluorescence in intact rice leaves. Plant Cell Environ 17:105–110
Article
Google Scholar
Tanaka T, Matsushima S (1970) Analysis of yield-determining process and its application to yield-prediction and culture improvement of lowland rice 94: relation between the light intensity on both sides and the amount of carbon assimilation in each side of a single leaf-blade. Proc Crop Soc Japan 39:325–329
Article
Google Scholar
Terashima I (1986) Dorsiventrality in photosynthetic light response curves of a leaf. J Exp Bot 37:399–405
Article
Google Scholar
Terashima I (1989) Productive structure of a leaf. In: Briggs WR (ed) Photosynthesis. Alan R. Liss, New York, pp 207–226
Google Scholar
Terashima I, Hikosaka K (1995) Comparative ecophysiology/anatomy of leaf and canopy photosynthesis. Plant Cell Environ 18:1111–1128
Article
Google Scholar
Terashima I, Inoue Y (1984) Comparative photosynthetic properties of palisade tissue chloroplasts and spongy tissue chloroplasts of Camellia japonica L.: functional adjustment of the photosynthetic apparatus to light environment within a leaf. Plant Cell Physiol 25:555–563
CAS
Google Scholar
Terashima I, Inoue Y (1985a) Palisade tisshe chloroplasts and spongy tissue chloroplasts in spinach: biochemical and ultrastructural differences. Plant Cell Physiol 26:63–75
CAS
Google Scholar
Terashima I, Inoue Y (1985b) Vertical gradient in photosynthetic properties of spinach chloroplasts dependent on intra-leaf light environment. Plant Cell Physiol 26:781–785
CAS
Google Scholar
Terashima I, Saeki T (1983) Light environment within a leaf. I. Optical properties of paradermal sections of Camellia leaves with special reference to differences in the optical properties of palisade and spongy tissues. Plant Cell Physiol 24:1493–1501
CAS
Google Scholar
Terashima I, Saeki T (1985) A new model for leaf photosynthesis incorporating the gradients of light environment and of photosynthetic properties of chloroplasts within a leaf. Ann Bot 56:489–499
CAS
Google Scholar
Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R (2009) Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol 50:684–697. doi:10.1093/pcp/pcp034
CAS
Article
PubMed
Google Scholar
Tholen D, Boom C, Noguchi K, Ueda S, Katase T, Terashima I (2008) The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabidopsis thaliana leaves. Plant Cell Env 31:1688–1700. doi:10.1111/j.1365-3040.2008.01875.x
CAS
Article
Google Scholar
Vogelmann TC (1993a) Plant tissue optics. Annu Rev Plant Physiol Plant Mol Biol 44:233–251
Article
Google Scholar
Vogelmann TC (1993b) Light within a plant. In: Kendrick RE, Kronenberg CHM (eds) Photomorphogensis in plants, 2nd edn. Kluwer, Dordrecht, pp 491–535
Google Scholar
Vogelmann T, Evans JR (2002) Profiles of light absorption and chlorophyll within spinach from chlorophyll fluorescence. Plant Cell Environ 25:1313–1323
Article
Google Scholar
Vogelmann TC, Gorton HL (2014) Leaf: light capture in the photosynthetic organ. In: Hohmann-Marriott MF (ed) The structural basis of biological energy generation. Advances in photosynthesis and respiration. Springer, Dordrecht, pp 363–377. doi:10.1007/978-94-017-8742-0_19
Chapter
Google Scholar
Vogelmann TC, Bornman JF, Josserand SA (1989) Photosynthetic light gradients and spectral regime within leaves of Medicago sativa. Phil Trans R Soc Lond B 323:411–421
Article
Google Scholar
Wooley JT (1971) Reflectance and transmittance of light by leaves. Plant Physiol 47:656–662. doi:10.1104/pp.47.5.656
Article
Google Scholar