Meaningful traits for grouping plant species across arid ecosystems

Abstract

Grouping species may provide some degree of simplification to understand the ecological function of plants on key ecosystem processes. We asked whether groups of plant species based on morpho-chemical traits associated with plant persistence and stress/disturbance resistance reflect dominant plant growth forms in arid ecosystems. We selected twelve sites across an aridity gradient in northern Patagonia. At each site, we identified modal size plants of each dominant species and assessed specific leaf area (SLA), plant height, seed mass, N and soluble phenol concentration in green and senesced leaves at each plant. Plant species were grouped according with plant growth forms (perennial grasses, evergreen shrubs and deciduous shrubs) and plant morphological and/or chemical traits using cluster analysis. We calculated mean values of each plant trait for each species group and plant growth form. Plant growth forms significantly differed among them in most of the morpho-chemical traits. Evergreen shrubs were tall plants with the highest seed mass and soluble phenols in leaves, deciduous shrubs were also tall plants with high SLA and the highest N in leaves, and perennial grasses were short plants with high SLA and low concentration of N and soluble phenols in leaves. Grouping species by the combination of morpho-chemical traits yielded 4 groups in which species from one growth form prevailed. These species groups differed in soluble phenol concentration in senesced leaves and plant height. These traits were highly correlated. We concluded that (1) plant height is a relevant synthetic variable, (2) growth forms adequately summarize ecological strategies of species in arid ecosystems, and (3) the inclusion of plant morphological and chemical traits related to defenses against environmental stresses and herbivory enhanced the potential of species grouping, particularly within shrubby growth forms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adler PB, Milchunas DG, Sala OE, Burke IC, Lauenroth WK (2005) Plant traits and ecosystem grazing effects: comparison of US Sagebrush steppe and Patagonian steppe. Ecol Appl 15:774–792

    Article  Google Scholar 

  2. Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84:597–608

    Article  Google Scholar 

  3. Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    CAS  Article  Google Scholar 

  4. Ares JO, Beeskow AM, Bertiller MB et al (1990) Structural and dynamic characteristics of overgrazed lands of northern Patagonia, Argentina. In: Breymeyer A (ed) Managed grasslands. Elsevier, The Netherlands, pp 149–175

    Google Scholar 

  5. Bär Lamas MI, Larreguy C, Carrera AL, Bertiller MB (2013) Changes in plant cover and functional traits induced by grazing in the arid Patagonian Monte. Acta Oecol 51:66–73

    Article  Google Scholar 

  6. Barros V, Rivero M (1982) Mapas de probabilidad de precipitación de la Provincia del Chubut. Monografía 54. Centro Nacional Patagónico. Puerto Madryn, Chubut, AR

  7. Belbin L, McDonald C (1993) Comparing three classification strategies for use in ecology. J Veg Sci 4:341–348

    Article  Google Scholar 

  8. Bertiller MB, Ares JO (2008) Sheep spatial grazing strategies at the arid Patagonian Monte, Argentina. Range Ecol Manage 61:38–47

    Article  Google Scholar 

  9. Bertiller MB, Bisigato A (1998) Vegetation dynamics under grazing disturbance. The state-and-transition model for the Patagonian steppes. Ecol Aust 8:191–199

    Google Scholar 

  10. Bertiller MB, Carrera AL (2015) Aboveground vegetation and perennial grass seed bank in arid rangelands disturbed by grazing. Range Ecol Manage 68:71–78

    Article  Google Scholar 

  11. Bertiller MB, Beeskow AM, Coronato FR (1991) Seasonal environmental variation and plant phenology in arid Patagonia (Argentina). J Arid Environ 21:1–11

    Google Scholar 

  12. Bertiller MB, Mazzarino MJ, Carrera AL et al (2006) Leaf strategies and soil N across a regional humidity gradient in Patagonia. Oecologia 148:612–624

    Article  PubMed  Google Scholar 

  13. Briske DD (1996) Strategies of plant survival in grazed systems: a functional interpretation. In: Hodgson J, Illius AW (eds) The ecology and management of grazed systems. CAB International, Wallingford, UK

    Google Scholar 

  14. Campanella MV, Bertiller MB (2008) Plant phenology, leaf traits, and leaf litterfall of contrasting life forms in arid Patagonian Monte, Argentina. J Veg Sci 19:75–85

    Article  Google Scholar 

  15. Carrera AL, Sain CL, Bertiller MB (2000) Patterns of nitrogen conservation in shrubs and grasses in the Patagonian Monte, Argentina. Plant Soil 224:185–193

    CAS  Article  Google Scholar 

  16. Carrera AL, Bertiller MB, Sain CL, Mazzarino MJ (2003) Relationship between plant nitrogen conservation strategies and the dynamics of soil nitrogen in the arid Patagonian Monte, Argentina. Plant Soil 255:595–604

    CAS  Article  Google Scholar 

  17. Carrera AL, Mazzarino MJ, Bertiller MB, del Valle HF, Carretero EM (2009) Plant impacts on nitrogen and carbon cycling in the Monte Phytogeographical Province, Argentina. J Arid Environ 73:192–201

    Article  Google Scholar 

  18. Casanoves F, Pla L, Di Rienzo JA (eds) (2011) Valoración y análisis de la diversidad funcional y su relación con los servicios ecosistémicos. Centro Agronómico Tropical de Investigación y Enseñanza, CATIE Turrialba, Costa Rica

    Google Scholar 

  19. Chapin FS, Zavaleta ES, Eviner VT et al (2000) Consequences of changing biodiversity. Nature 405:234–242

    CAS  Article  PubMed  Google Scholar 

  20. Chesson P, Gebauer RL, Schwinning S et al (2004) Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141:236–253

    Article  PubMed  Google Scholar 

  21. Chubut Province (1960–1970–1978–1991) Statistics of the Chubut Province. http://www.chubut.gov.ar

  22. Cornelissen JHC (1999) A triangular relationship between leaf size and seed size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia 118:248–255

    Article  Google Scholar 

  23. Cornwell WK, Cornelissen JH, Amatangelo K et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  24. Couso LL, Fernández RJ (2012) Phenotypic plasticity as an index of drought tolerance in three Patagonian steppe grasses. Ann Bot 110:849–857

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Crawley MJ (ed) (1998) Plant ecology. Blackwell, Cambridge

    Google Scholar 

  26. de Bello F, Lavergne S, Meynard CN, Lepš J, Thuiller W (2010) The partitioning of diversity: showing Theseus a way out of the labyrinth. J Veg Sci 21:92–1000

    Article  Google Scholar 

  27. del Arco JM, Escudero A, Garrido MV (1991) Effects of site characteristics on nitrogen retranslocation from senescing leaves. Ecol 72:701–708

    Article  Google Scholar 

  28. Díaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. J Veg Sci 8:463–474

    Article  Google Scholar 

  29. Díaz S, Hodgson JG, Thompson K et al (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304

    Article  Google Scholar 

  30. Fortunel C, Garnier E, Joffre R et al (2009) Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecol 90:598–611

    Article  Google Scholar 

  31. Fry EL, Power SA, Manning P (2013) Trait-based classification and manipulation of plant functional groups for biodiversity–ecosystem function experiments. J Veg Sci 25:248–261

    Article  Google Scholar 

  32. Golluscio RA, Sala OE (1993) Plant functional types and ecological strategies in Patagonian forbs. J Veg Sci 4:839–846

    Article  Google Scholar 

  33. Golodets C, Sternberg M, Kigel J (2009) A community-level test of the leaf-height-seed ecology strategy scheme in relation to grazing conditions. J Veg Sci 20:392–402

    Article  Google Scholar 

  34. Grace J (1998) Plant water relation. In: Crawley MJ (ed) Plant ecology. Blackwell Science, Oxford, pp 284–324

    Google Scholar 

  35. Grassein F, Till-Bottraud I, Lavorel S (2010) Plant resource-use strategies: the importance of phenotypic plasticity in response to a productivity gradient for two subalpine species. Ann Bot 106:637–645

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hartley SE, Jones CG (1998) Plant chemistry and herbivory, or why the world is green. In: Crawley MJ (ed) Plant ecology. Blackwell Science, Oxford, pp 284–324

    Google Scholar 

  37. Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. TREE 15:238–243

    PubMed  Google Scholar 

  38. Hillebrand H, Matthiessen B (2009) Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecol Lett 12:1405–1419

    Article  PubMed  Google Scholar 

  39. Jardim AVF, Batalha MA (2008) Can we predict dispersal guilds based on the leaf-height-seed scheme in a disjunct cerrado woodland? Braz J Biol 68:553–559

    CAS  Article  PubMed  Google Scholar 

  40. Körner C (1994) Scaling from species to vegetation: the usefulness of functional groups. In: Schulze ED, Mooney HA (eds) Biodiversity and ecosystem function. Springer, Berlin, pp 117–139

    Google Scholar 

  41. Lambers H, Chapin FS, Pons T (eds) (2000) Plant physiological ecology. Springer-Verlag, New York

    Google Scholar 

  42. Larreguy C, Carrera AL, Bertiller MB (2014) Effects of long-term grazing disturbance on the belowground storage of organic carbon in the Patagonian Monte, Argentina. J Environ Manage 134:47–55

    CAS  Article  PubMed  Google Scholar 

  43. Lázaro-Nogal A, Forner A, Traveset A, Valladares F (2013) Contrasting water strategies of two Mediterranean shrubs of limited distribution: uncertain future under a drier climate. Tree Physiol 33:1284–1295

    Article  PubMed  Google Scholar 

  44. Le Houérou H (1990) Bioclimatologie comparative des Zones Arides s.l. de l’Afrique et l’Amerique Latine. Terra Arida 7:26–55

    Google Scholar 

  45. Leishman MR, Westoby M (1992) Classifying plants into groups on the basis of associations of individual traits-Evidence from Australian semi-arid woodlands. J Ecol 80:417–424

    Article  Google Scholar 

  46. León RJC, Bran D, Collantes M, Paruelo JM, Soriano A (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecol Aust 8:125–144

    Google Scholar 

  47. Mazzarino MJ, Bertiller MB (1999) Soil N pools and processes as indicators of desertification in semi-arid woodlands and semi-arid steppes of Argentina. In: Proceedings of the VV International Rangeland Congress. Townsville, Australia, pp 101–105

  48. Mazzarino MJ, Bertiller M, Schlichter T, Gobbi M (1998) Nutrient cycling in Patagonian ecosystems. Ecol Aust 8:167–181

    Google Scholar 

  49. Mediavilla S, Escudero A (2003) Relative growth rate of leaf biomass and leaf nitrogen content in several Mediterranean woody species. Plant Ecol 168:321–332

    Article  Google Scholar 

  50. Milchunas DG, Lauenroth WK, Burke IC (1998) Livestock grazing: animal and plant biodiversity of shortgrass steppe and the relationship to ecosystem function. Oikos 83:65–74

    Article  Google Scholar 

  51. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  52. Moles AT, Warton DI, Warman L et al (2009) Global patterns in plant height. J Ecol 97:923–932

    Article  Google Scholar 

  53. Moncrieff GR, Hickler T, Higgins SI (2015) Intercontinental divergence in the climate envelope of major plant biomes. Global Ecol Biogeogr 24:324–334

    Article  Google Scholar 

  54. Moog D, Kahmen S, Poschlod P (2005) Application of CSR and LHS strategies for the distinction of differently managed grasslands. Basic Appl Ecol 6:133–143

    Article  Google Scholar 

  55. Moreno L, Bertiller MB (2015) Phenotypic plasticity of morpho-chemical traits of perennial grasses from contrasting environments of arid Patagonia. J Arid Environ 116:96–102

    Article  Google Scholar 

  56. Moreno L, Bertiller MB, Carrera AL (2010) Changes in traits of shrub canopies across an aridity gradient in northern Patagonia, Argentina. Basic Appl Ecol 11:693–701

    Article  Google Scholar 

  57. Mueller-Dombois D, Ellenberg H (1974) Aims and Methods of Vegetation Ecology. Wiley, New York

    Google Scholar 

  58. Murray BR, Thrall PH, Gill AM, Nicotra AB (2002) How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales. Aust Ecol 27:291–310

    Article  Google Scholar 

  59. Navas ML, Roumet C, Bellmann A, Laurent G, Garnier E (2009) Suites of plant traits in species from different stages of a Mediterranean secondary succession. Plant Biol 12:183–196

    Article  Google Scholar 

  60. Niinemets Ü, Tamm Ü (2005) Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands. Tree Physiol 25:1001–1014

    Article  PubMed  Google Scholar 

  61. Niu K, Zhang S, Zhao B, Du G (2010) Linking grazing response of species abundance to functional traits in the Tibetan alpine meadow. Plant Soil 330:215–223

    CAS  Article  Google Scholar 

  62. Norusis MJ (1997) SPSS advanced statistics 7.5. SPSS. Inc., Chicago

  63. Noy Meir I (1973) Desert ecosystems: environment and producers. Ann Rev Ecol Sys 4:25–52

    Article  Google Scholar 

  64. Pazos GE, Ares JO, Bertiller MB (2010) Quantitative assessment of shrub–grass mosaic development in grazed shrublands: an example in the Patagonian Monte (Argentina). J Arid Environ 74:998–1002

    Article  Google Scholar 

  65. Pérez- Harguindeguy N, Díaz S, Garnier E et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234

    Article  Google Scholar 

  66. Pietsch KA, Ogle K, Cornelissen JH et al (2014) Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Glob Ecol Biogeogr 23:1046–1057

    Article  Google Scholar 

  67. Reich PB (2014) The worldwide ‘fast–slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275–301

    Article  Google Scholar 

  68. Rusch GM, Pausas JG, Lepš J (2003) Plant functional types in relation to disturbance and land use: introduction. J Veg Sci 14:307–310

    Article  Google Scholar 

  69. Sala OE, Golluscio RA, Lauenroth WK, Soriano A (1989) Resource partitioning between shrubs and grasses in the Patagonian steppe. Oecologia 81:501–505

    Article  Google Scholar 

  70. Saraví Cisneros H, Bertiller MB, Carrera AL, Larreguy C (2013) Diversity of phenolic compounds and plant traits in coexisting Patagonian desert shrub species of Argentina. Plant Ecol 11:1335–1343

    Article  Google Scholar 

  71. Shaver GR, Chapin FS (1980) Response to fertilization by various plant growth forms in an Alaskan tundra: nutrient accumulation and growth. Ecol 61:662–675

    CAS  Article  Google Scholar 

  72. Sneath P, Sokal R (1973) Numerical taxonomy: the principles and practice of numerical classification. SW Freeman, San Francisco

    Google Scholar 

  73. Sokal RR, Rohlf FJ (1981) Biometry. Freeman, San Francisco

    Google Scholar 

  74. Tieszen LL, Archer S (1990) Isotopic assessment of vegetation changes in grassland and woodland systems. In: Osmond CB, Pitelka LF, Hidy GM (eds) Plant biology of the basin and range. Springer-Verlag, New York, pp 293–321

    Google Scholar 

  75. Vesk PA, Westoby M (2001) Predicting plant species’ responses to grazing. J Appl Ecol 38:897–909

    Article  Google Scholar 

  76. Violle C, Navas ML, Vile D et al (2007) Let the concept of trait be functional. Oikos 116:882–892

    Article  Google Scholar 

  77. Waterman PG, Mole S (1994) Analysis of phenolic plant metabolites. Blackwell Scientific, Oxford

    Google Scholar 

  78. Weiher E, van der Werf A, Thompson K et al (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620

    Article  Google Scholar 

  79. West NE (ed) (1983) Temperate deserts and semi-deserts. Ecosystems of the world 5. Amsterdam: Elsevier

  80. Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227

    CAS  Article  Google Scholar 

  81. Westoby M, Eldridge D, Freudenberger D (1999) The LHS strategy scheme in relation to grazing and fire. Proc Int Range Cong 2:893–896

    Google Scholar 

  82. Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Ann Rev Ecol Sys 33:125–159

    Article  Google Scholar 

  83. Woodward FI, Cramer W (1996) Plant functional types and climatic changes: introduction. J Veg Sci 7:306–308

    Article  Google Scholar 

  84. Wright IJ, Westoby M (2003) Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct Ecol 17:10–19

    Article  Google Scholar 

  85. Wright IJ, Reich PB, Cornelissen JHC et al (2004) Assessing the generality of global leaf trait relationships. New Phytol 166:485–496

    Article  Google Scholar 

  86. Zhao N, He N, Wang Q et al (2014) The altitudinal patterns of leaf C:N: P stoichiometry are regulated by plant growth form, climate and soil on Changbai mountain, China. PLoS One 9:e95196. doi:10.1371/journal.pone.0095196

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zunzunegui M, Barradas MD, Ain-Lhout F, Clavijo A, Novo FG (2005) To live or to survive in Doñana dunes: adaptive responses of woody species under a Mediterranean climate. Plant Soil 273:77–89

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marlene Ivonne Bär Lamas.

Ethics declarations

Funding information

This work was supported by the National Agency for Scientific, Technological Promotion (PICTs 1349, 1368) and the National Research Council of Argentina (CONICET PIPs-112-200801-01664 and 112-201301-00449). M. I. Bär Lamas fellowship is supported by CONICET.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bär Lamas, M.I., Carrera, A.L. & Bertiller, M.B. Meaningful traits for grouping plant species across arid ecosystems. J Plant Res 129, 449–461 (2016). https://doi.org/10.1007/s10265-016-0803-6

Download citation

Keywords

  • Desert plants
  • N concentration
  • Plant height
  • Seed mass
  • Soluble phenols
  • Specific leaf area