Advertisement

Journal of Plant Research

, Volume 129, Issue 3, pp 477–485 | Cite as

Reproductive biology of an Alpic paleo-endemic in a changing climate

  • Maria Guerrina
  • Gabriele Casazza
  • Elena Conti
  • Carmelo Macrì
  • Luigi Minuto
Regular Paper

Abstract

Climate change is known to have a profound influence on plant reproduction, mainly because it affects plant/pollinator interactions, sometimes driving plants to extinction. Starting from the Neogene, the European climate was subjected to severe alterations. Nevertheless, several genera, including Berardia, survived these climatic changes. Despite the numerous studies performed about the relationship between climate change and plant reproductive biology, equivalent studies on ancient species are lacking, even though they may furnish crucial information on the strategies that allowed them to survive drastic climatic fluctuations. We investigated floral and reproductive features in Berardia subacaulis (Asteraceae), describing pollen vectors, capitulum and florets phenology, evaluating reproductive efficiency and defining the reproductive mode of the plant with bagging experiments and test of apomixis. B. subacaulis grows in habitats with low pollination services; it is self-compatible, but many typical features favouring cross-pollination are still present: florets are characterized by incomplete protandry, capitulum protogyny and high pollen–ovule ratio. The plant is not apomictic and self-fertilization is allowed within each capitulum. Similarly to other European Alpine endemics supposed to belong to the Mediterranean ancient tropical flora, the reproductive mode observed in the monospecific genus Berardia assured reproduction also under a pollinator decline. Differently from the other endemics, it took advantage of its spontaneous self-pollination and compatibility and its generalist pollination service, common both among high altitude plants and in the Asteraceae.

Keywords

Berardia subacaulis Vill. Asteraceae Paleo-endemic plant species Pollen vectors Reproductive strategy 

Notes

Acknowledgments

We are grateful to L. Galli (DISTAV, University of Genoa) for insect identification. Special thanks to J. Suda (Department of Botany, Charles University of Prague) for performing the flow cytometric screen of seeds employed to test for apomixis. This work was supported by a grant from Parco Naturale delle Alpi Marittime and BIODIVAM Project J72D13000070007 within ALCOTRA European Programme.

Supplementary material

10265_2016_796_MOESM1_ESM.doc (49 kb)
Supplementary material 1 (DOC 49 kb)

References

  1. Arroyo MTK, Primack RB, Armesto JJ (1982) Community studies in pollination ecology in the high temperate Andes of central Chile. I. Pollination mechanisms and altitudinal variation. Am J Bot 69:82–97CrossRefGoogle Scholar
  2. Arroyo MTK, Armesto JJ, Primack RB (1985) Community studies in pollination ecology in the high temperate Andes of central Chile II. Effect of temperature on visitation rates and pollination possibilities. Plant Syst Evol 149:187–203CrossRefGoogle Scholar
  3. Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wilson WG (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421CrossRefGoogle Scholar
  4. Barres L, Sanmartín I, Anderson CL, Susanna A, Buerki S, Galbany-Casals M, Vilatersana R (2013) Constructing the evolution and biogeographic history of tribe Cardueae (Compositae). Am J Bot 100:867–882CrossRefPubMedGoogle Scholar
  5. Barrett SCH (2003) Mating strategies in flowering plants: the outcrossing–selfing paradigm and beyond. Philos Trans R Soc B 358:991–1004CrossRefGoogle Scholar
  6. Billings WD, Mooney HA (1968) The ecology of arctic and alpine plants. Biol Rev 43:481–529CrossRefGoogle Scholar
  7. Bliss LC (1971) Arctic and Alpine plant life cycles. Annu Rev Ecol S 2:405–438CrossRefGoogle Scholar
  8. Bogacheva-Milkoteva K, Kozuharova E, Claßen-Bockhoff R (2013a) Breeding systems of Haberlea rhodopensis (Gesneriaceae), a Tertiary relict endemic to the Balkan Peninsula. Phytol Balc 19:201–208Google Scholar
  9. Bogacheva-Milkoteva K, Kozuharova E, Claßen-Bockhoff R, Gogala A (2013b) Pollination ecology of Haberlea rhodopensis Friv. (Gesneriaceae), a Tertiary relict endemic to the Balkan peninsula. C R Acad Bulg Sci 66:1427–1436Google Scholar
  10. Brown AO, McNeil JN (2009) Pollination ecology of the high latitude, dioecious cloudberry (Rubus chamaemorus; Rosaceae). Am J Bot 96:1096–1107CrossRefPubMedGoogle Scholar
  11. Brys R, de Crop E, Hoffmann M, Jacquemyn H (2011) Importance of autonomous selfing is inversely related to population size and pollinator availability in a monocarpic plant. Am J Bot 98:1834–1840CrossRefPubMedGoogle Scholar
  12. Dafni A (1992) Pollination ecology: a practical approach. Oxford University Press, OxfordGoogle Scholar
  13. Dajoz I (1989) Structure dans l’espace et dans le temps des populations de Xatardia scabra (Lapeyr.) Meissn., Apiaceae. Acta Biol Mont 9:245–252Google Scholar
  14. Dittrich M (1996) Bemerkungen zur Tribuszugehorigkeit von Berardia. Ann Naturhist Mus Wien B 99:329–342Google Scholar
  15. Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244CrossRefPubMedGoogle Scholar
  16. Dubreuil M, Riba M, Mayol M (2008) Genetic structure and diversity in Ramonda myconi (Gesneriaceae): effects of historical climate change on a pre-Glacial relict species. Am J Bot 95:577–587CrossRefPubMedGoogle Scholar
  17. Eckert CG, Kalisz S, Geber MA, Sargent R, Elle E, Cheptou P-O, Goodwillie C, Johnston MO, Kelly JK, Moeller DA, Porcher E, Ree RH, Vallejo-Marín M, Winn AA (2010) Plant mating systems in a changing world. Trends Ecol Evol 25:35–43CrossRefPubMedGoogle Scholar
  18. Elberling H, Olesen JM (1999) The structure of a high latitude plant–flower visitor system: the dominance of flies. Ecography 22:314–323CrossRefGoogle Scholar
  19. Endress PK (1999) Symmetry in flowers: diversity and evolution. Int J Plant Sci 160:S3–S23CrossRefPubMedGoogle Scholar
  20. Erbar C, Leins P (1995) Portioned pollen release and the syndromes of secondary pollen presentation in the Campanulales–Asterales-complex. Flora 190:323–338Google Scholar
  21. Ferrer MM, Good-Avila SV (2007) Macrophylogenetic analyses of the gain and loss of self-incompatibility in the Asteraceae. New Phytol 173:401–414CrossRefPubMedGoogle Scholar
  22. Free JB (1993) Insect pollination of crops. Academic Press, LondonGoogle Scholar
  23. Fulkerson JR, Whittall JB, Carlson ML (2012) Reproductive ecology e severe pollen limitation in the polychromic tundra plant, Parrya nudicaulis (Brassicaceae). PLoS ONE 7:e32790CrossRefPubMedPubMedCentralGoogle Scholar
  24. García MB, Antor RJ, Espadaler X (1995) Ant pollination of the palaeoendemic dioecious Borderea pyrenaica (Dioscoreaceae). Plant Syst Evol 198:17–27CrossRefGoogle Scholar
  25. García MB, Espadaler X, Olesen JM (2012) Extreme reproduction and survival of a true cliffhanger: the endangered plant Borderea chouardii (Dioscoreaceae). PlosONE 7:e44657CrossRefGoogle Scholar
  26. Gómez JM (2002) Self-pollination in Euphrasia willkommii Freyn (Scrophulariaceae), an endemic species from the alpine of the Sierra Nevada (Spain). Plant Syst Evol 232:63–71CrossRefGoogle Scholar
  27. Heslop-Harrison Y, Shivanna KR (1977) The receptive surface of the angiosperm stigma. Ann Bot 41:1233–1258Google Scholar
  28. Hileman L (2014) Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances. Philos Trans R Soc B 369:20130348CrossRefGoogle Scholar
  29. Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80:489–513CrossRefPubMedGoogle Scholar
  30. Holsinger KE (2000) Reproductive systems and evolution in vascular plants. Proc Natl Acad Sci USA 97:7037–7042CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jeffrey C (2009) Evolution of Compositae flowers. In: Funk VA, Susanna A, Stuessy TF, Bayer RJ (eds) Systematic evolution, and biogeography of Compositae. International Association for Plant Taxonomy, Vienna, pp 131–138Google Scholar
  32. Johnson SD, Midgley JJ (1997) Fly pollination of Gorteria diffusa (Asteraceae), and a possible mimetic function for dark spots on the capitulum. Am J Bot 84:429–436CrossRefPubMedGoogle Scholar
  33. Kevan PG (1972) Insect pollination of high arctic flowers. J Ecol 60:831–847CrossRefGoogle Scholar
  34. Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M, Campbell DR, Dudash MR, Johnston MO, Mitchell RJ, Ashman T-L (2005) Pollen limitation of plant reproduction: pattern and process. Annu Rev Ecol Evol Syst 36:467–497CrossRefGoogle Scholar
  35. Ladd PG (1994) Pollen presenters in the flowering plants—form and function. Bot J Linn Soc 115:165–195Google Scholar
  36. Lane MA (1996) Pollination biology of Compositae. In: Caligari PDS, Hind DJN (eds) Compositae: biology and utilization, proceedings of the international compositae conference, Kew, 1994. Royal Botanic Garden, Kew, pp 61–80Google Scholar
  37. Leins P, Erbar C (1990) On the mechanisms of secondary pollen presentation in the Campanulales–Asterales complex. Bot Acta 103:87–92CrossRefGoogle Scholar
  38. Levin DA (2012) Mating system shifts on the trailing edge. Ann Bot 109:613–620CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lloyd DG (1979) Some reproductive factors affecting the selection of self-fertilization in plants. Am Nat 113:67–79CrossRefGoogle Scholar
  40. Lloyd DG (1992) Self- and cross-fertilization in plants. II. The selection of self-fertilization. Int J Plant Sci 153:370–380CrossRefGoogle Scholar
  41. Lloyd G, Schoen DJ (1992) Self- and cross-fertilization in plants. I. Functional dimensions. Int J Plant Sci 153:358–369CrossRefGoogle Scholar
  42. Lloyd G, Webb CJ (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperms. I. Dichogamy. N Z J Bot 24:135–162CrossRefGoogle Scholar
  43. Lloyd DG, Yates JMA (1982) Intrasexual selection and the segregation of pollen and stigmas in hermaphrodite plants, exemplified by Wahlenbergia albomarginata (Campanulaceae). Evolution 36:903–913CrossRefGoogle Scholar
  44. Mani MS (1962) Introduction to high altitude entomology: insect life above the timberline in the north-western Himalayas. Methuen, LondonGoogle Scholar
  45. Medan D, Montaldo NH, Mantese A, Vasellati V, Roitman GG, Bartoloni NH (2002) Plant–pollinator relationships at two altitudes in the Andes of Mendoza, Argentina. Arct Antarct Alp Res 34:233–241CrossRefGoogle Scholar
  46. Mejías JA (1994) Self-fertility and associated flower head traits in the Iberian taxa of Lactuca and related genera (Asteraceae: Lactuceae). Plant Syst Evol 191:147–160CrossRefGoogle Scholar
  47. Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant–pollinator interactions. Ecol Lett 10:710–717CrossRefPubMedGoogle Scholar
  48. Narbona E, Dirzo R (2010) A reassessment of the function of floral nectar in Croton suberosus (Euphorbiaceae): a reward for plant defenders and pollinators. Am J Bot 97:672–679CrossRefPubMedGoogle Scholar
  49. Noyes RD (2007) Apomixis in the Asteraceae: diamonds in the rough. Funct Plant Sci Biotechnol 1:207–222Google Scholar
  50. Olesen J, Jordano P (2002) Geographic patterns in plant–pollinator mutualistic networks. Ecology 83:2416–2424Google Scholar
  51. Olsen KM (1997) Pollination effectiveness and pollinator importance in a population of Heterotheca subaxillaris (Asteraceae). Oecologia 109:114–121Google Scholar
  52. Ortiz MÁ, Talavera S, García-Castaño JL, Tremetsberger K, Stuessy TF, Balao F, Casimiro-Soriguer R (2006) Self-incompatibility and floral parameters in Hypochaeris sect. Hypochaeris (Asteraceae). Am J Bot 93:234–244CrossRefPubMedGoogle Scholar
  53. Ozenda P (2009) On the genesis of the plant population in the Alps: new or critical aspects. C R Biol 332:1092–1103CrossRefPubMedGoogle Scholar
  54. Peng DL, Zhang ZQ, Xu B, Li ZM, Sun H (2012) Patterns of flower morphology and sexual systems in the subnival belt of the Hengduan Mountains, SW China. Alp Bot 122:65–73CrossRefGoogle Scholar
  55. Picó FX, Riba M (2002) Regional scale demography of Ramonda myconi: remnant population dynamics in a preglacial relict species. Plant Ecol 161:1–13CrossRefGoogle Scholar
  56. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.r-project.org
  57. Rakić T, Lazarević M, Jovanović ŽS, Radović S, Siljak-Yakovlev S, Stevanović B, Stevanović V (2013) Resurrection plants of the genus Ramonda: prospective survival strategies—unlock further capacity of adaptation, or embark on the path of evolution? Front Plant Sci 4:550PubMedCentralGoogle Scholar
  58. Richards AJ (1997) Plant breeding systems. Chapman & Hall, LondonCrossRefGoogle Scholar
  59. Sáenz de Rivas C (1977) Notas sobre Xatardia scabra (Lapeyr.) Meissn., Umbelliferae (1). Anal Inst Bot Cavanilles 34:133–138Google Scholar
  60. Schlessmann MA (2010) Major events in the evolution of sexual systems in Apiales: ancestral andromonoecy abandoned. Plant Div Evol 128:233–245CrossRefGoogle Scholar
  61. Segarra-Moragues JG, Palop-Esteban M, González-Candelas F, Catalán P (2005) On the verge of extinction: genetics of the critically endangered Iberian plant species, Borderea chouardii (Dioscoreaceae) and implications for conservation management. Mol Ecol 14:969–982CrossRefPubMedGoogle Scholar
  62. Segarra-Moragues JG, Palop-Esteban M, González-Candelas F, Catalán P (2007) Nunatak survival vs. tabula rasa in the Central Pyrenees: a study on the endemic plant species Borderea pyrenaica (Dioscoreaceae). J Biogeogr 34:1893–1906CrossRefGoogle Scholar
  63. Shao JF, Quan QM, Cai WG, Guan LL, Wu W (2012) The effect of floral morphology on seed set in Carthamus tinctorius Linnaeus (Asteraceae) clones of Sichuan province in China. Plant Syst Evol 298:59–68CrossRefGoogle Scholar
  64. Short PS (2000) Notes on Myriocephalus Benth. s. lat. (Asteraceae: Gnaphalieae). Aust Syst Bot 13:729–738CrossRefGoogle Scholar
  65. Stebbins GL (1974) Flowering plants: evolution above the species level. Belknap Press of the Harvard University, CambridgeCrossRefGoogle Scholar
  66. Susanna A, Garcia-Jacas N (2009) Cardueae (Carduoideae). In: Funk VA, Susanna A, Stuessy TF, Bayer RJ (eds) Systematic evolution, and biogeography of Compositae. International Association for Plant Taxonomy, Vienna, pp 293–313Google Scholar
  67. Susanna A, Garcia-Jacas N, Hidalgo O, Vilatersana R, Garnatje T (2006) The Cardueae (Compositae) revisited: insights from ITS, trnL-trnF, and matK nuclear and chloroplast DNA analysis. Ann Mo Bot Gard 93:150–171CrossRefGoogle Scholar
  68. Thomann M, Imbert E, Devaux C, Cheptou P-O (2013) Flowering plants under global pollinator decline. Trends Plant Sci 18:353–359CrossRefPubMedGoogle Scholar
  69. Thompson JD (2005) Plant evolution in the Mediterranean. Oxford University Press, OxfordCrossRefGoogle Scholar
  70. Torres-Díaz C, Cavieres LA, Muñoz-Ramírez C, Arroyo MTK (2007) Consequences of microclimate variation on insect pollinator visitation in two species of Chaetanthera (Asteraceae) in the central Chilean Andes. Rev Chil Hist Nat 80:455–468CrossRefGoogle Scholar
  71. Torres-Díaz C, Gómez-González S, Stotz GC, Torres-Morales P, Paredes B, Pérez-Millaqueo M, Gianoli E (2011) Extremely long-lived stigmas allow extended cross-pollination opportunities in a high Andean plant. PLoS ONE 6:e19497CrossRefPubMedPubMedCentralGoogle Scholar
  72. Totland Ø (1993) Pollinator in alpine Norway: flowering phenology, insect visitors, and visitation rates in two plant communities. Can J Bot 78:1072–1079CrossRefGoogle Scholar
  73. Totland Ø (1994) Influence of climate, time of day and season, and flower density on insect flower visitation in alpine Norway. Arct Antarct Alp Res 26:66–71CrossRefGoogle Scholar
  74. Ueckermann C, van Rooyen MW (2000) Insect pollination and seed set in four ephemeral plant species from Namaqualand. S Afr J Bot 66:28–30CrossRefGoogle Scholar
  75. Vokou D, Petanidou T, Bellos D (1990) Pollination ecology and reproductive potential of Jankaea heldreichii (Gesneriaceae): a tertiary relict on Mt Olympus, Greece. Biol Conserv 52:125–133CrossRefGoogle Scholar
  76. Walter H, Straka H (1970) Arealkunde.Einführung in die Phytologie, III/2. Ulmer, StuttgartGoogle Scholar
  77. Wang YZ, Liang RH, Wang BH, Li JM, Qiu ZJ, Li ZY, Weber A (2010) Origin and phylogenetic relationships of the Old World Gesneriaceae wth actinomorphic flowers inferred from ITS and trnLtrnF sequences. Taxon 59:1044–1052Google Scholar
  78. Woodward FI (1987) Climate and plant distribution. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Maria Guerrina
    • 1
  • Gabriele Casazza
    • 1
  • Elena Conti
    • 2
  • Carmelo Macrì
    • 1
  • Luigi Minuto
    • 1
  1. 1.DISTAV, Polo Botanico HanburyUniversità degli Studi di GenovaGenoaItaly
  2. 2.Institute of Systematic Botany, Botanic GardenUniversity of ZurichZurichSwitzerland

Personalised recommendations