Skip to main content

The effects of Ni2+ on electrical signaling of Nitellopsis obtusa cells

Abstract

The effect of nickel (Ni) on the generation of plant bioelectrical signals was evaluated in Nitellopsis obtusa, a Characean model organism. Conventional glass-microelectrode technique and K+-anaesthesia method in current-clamp and voltage-clamp modes were used for the measurement and analysis of electrical parameters. Ni2+ treatment rapidly influenced the action potential (AP) parameters namely, excitation threshold, AP peak and duration, membrane potential at various voltages and dynamics of ion currents. We conclude that altered electrical signaling pathway in the test organism constituted the early target for Ni toxicity imposition. The observed Ni interference could be ascribed to disturbed [Ca2+]cyt content, impaired Cl and K+ channels activity resulting in decreased excitability and repolarization rate in generated AP.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Al Khazaaly S, Beilby MJ (2012) Zinc ions block H+/OH channels in Chara australis. Plant Cell Environ 35:1380–1392

    CAS  Article  PubMed  Google Scholar 

  • Beilby MJ (2007) Action potential in charophytes. Int Rev Cytol 257:43–82

    CAS  Article  PubMed  Google Scholar 

  • Berestovsky G, Kataev A (2005) Voltage-gated calcium and Ca2+-activated chloride channels and Ca2+ transients: voltage-clamp studies of perfused and intact cells of Chara. Eur Biophys J 34:973–986

    CAS  Article  PubMed  Google Scholar 

  • De Vos CHR, Schat H, De Waal MAM, Vooijs R, Ernst WHO (1991) Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiol Plant 82:523–528

    Article  Google Scholar 

  • Demidchik V, Sokolik A, Yurin V (1997) The effect of Cu2+ on ion transport systems of the plant cell plasmalemma. Plant Physiol 114:1313–1325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Djebali W, Zarrouk M, Brouquisse R, El Kahoui S, Limam F, Ghorbel MH, Chaïbi W (2005) Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon esculentum) chloroplast membranes. Plant Biol (Stuttg) 7:358–368

    CAS  Article  Google Scholar 

  • Elzenga JTM, Prins HBA, Vanvolkenburgh E (1995) Light-induced membrane-potential changes of epidermal and mesophyll-cells in growing leaves of pisum–sativum. Planta 197:127–134

    CAS  Article  Google Scholar 

  • Felle HH, Zimmermann MR (2007) Systemic signalling in barley through action potentials. Planta 226:203–214

    CAS  Article  PubMed  Google Scholar 

  • Fisahn J, Herde O, Willmitzer L, Pena-Cortes H (2004) Analysis of the transient increase in cytosolic Ca2+ during the action potential of higher plants with high temporal resolution: requirement of Ca2+ transients for induction of jasmonic acid biosynthesis and PINII gene expression. Plant Cell Physiol 45:456–459

    CAS  Article  PubMed  Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257

    CAS  Article  PubMed  Google Scholar 

  • Gajewska E, Bernat P, Długoński J, Skłodowska M (2012) Effect of nickel on membrane integrity, lipid peroxidation and fatty acid composition in wheat seedlings. J Agron Crop Sci 198:286–294

    CAS  Article  Google Scholar 

  • Gradogna A, Scholz-Starke J, Gutla PVK, Carpaneto A (2009) Fluorescence combined with excised patch: measuring calcium currents in plant cation channels. Plant J 58:175–182

    CAS  Article  PubMed  Google Scholar 

  • Homann U, Thiel G (1994) Cl and K+ channel currents during the action-potential in chara: simultaneous recording of membrane voltage and patch currents. J Membr Biol 141:297–309

    CAS  Article  PubMed  Google Scholar 

  • Janicka-Russak M, Kabala K, Burzynski M, Klobus G (2008) Response of plasma membrane H(+)-ATPase to heavy metal stress in Cucumis sativus roots. J Exp Bot 59:3721–3728

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Kisnieriene V, Sakalauskas V, Pleskaciauskas A, Yurin V, Ruksenas O (2009) The combined effect of Cd2+ and ACh on action potentials of Nitellopsis obtusa cells. Cent Eur J Biol 4:343–350

    CAS  Google Scholar 

  • Kisnieriene V, Ditchenko TI, Kudryashov AP, Sakalauskas V, Yurin VM, Ruksenas O (2012) The effect of acetylcholine on Characeae K+ channels at rest and during action potential generation. Cent Eur J Biol 7:1066–1075

    CAS  Google Scholar 

  • Kisnieriene V, Burneika J, Lapeikaite I, Sevriukova O, Daktariunas A (2014) Investigation of membrane potential changes in Nitellopsis obtusa cells induced by blue and red light stimulation. Biologija 60:71–78

    CAS  Article  Google Scholar 

  • Kurtyka R, Burdach Z, Karcz W (2011) Effect of cadmium and lead on the membrane potential and photoelectric reaction of Nitellopsis obtusa cells. Gen Physiol Biophys 30:52–58

    CAS  Article  PubMed  Google Scholar 

  • Llamas A, Sanz A (2008) Organ-distinctive changes in respiration rates of rice plants under nickel stress. Plant Growth Regul 54:63–69

    CAS  Article  Google Scholar 

  • Lunevsky VZ, Zherelova OM, Vostrikov IY, Berestovsky GN (1983) Excitation of characeae cell-membranes as a result of activation of calcium and chloride channels. J Membr Biol 72:43–58

    Article  Google Scholar 

  • Manusadzianas L, Maksimov G, Darginaviciene J, Jurkoniene S, Sadauskas K, Vitkus R (2002) Response of the charophyte Nitellopsis obtusa to heavy metals at the cellular, cell membrane, and enzyme levels. Environ Toxicol 17:275–283

    CAS  Article  PubMed  Google Scholar 

  • Mimura T (1995) Physiological-characteristics and regulation mechanisms of the H+ pumps in the plasma-membrane and tonoplast of characean cells. J Plant Res 108:249–256

    CAS  Article  Google Scholar 

  • Moran N, Fox D, Satter RL (1990) Interaction of the depolarization-activated K+ channel of Samanea–Saman with inorganic-ions: a patch-clamp study. Plant Physiol 94:424–431

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    CAS  Article  Google Scholar 

  • Nishida S, Aisu A, Mizuno T (2012) Induction of IRT1 by the nickel-induced iron-deficient response in Arabidopsis. Plant Signal Behav 7:329–331

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Opritov VA, Pyatygin SS, Vodeneev VA (2002) Direct coupling of action potential generation in cells of a higher plant (Cucurbita pepo) with the operation of an electrogenic pump. Russ J Plant Physiol 49:142–147

    CAS  Article  Google Scholar 

  • Polacco JC, Mazzafera P, Tezotto T (2013) Opinion: nickel and urease in plants—still many knowledge gaps. Plant Sci 199200:79–90

    Article  Google Scholar 

  • Pyatygin SS, Opritov VA, Vodeneev VA (2008) Signaling role of action potential in higher plants. Russ J Plant Physiol 55:285–291

    CAS  Article  Google Scholar 

  • Rubio MI, Escrig I, Mart_Łnez-Cortina C, Lopez-Benet FJ, Sanz A (1994) Cadmium and nickel accumulation in rice plants. Effects on mineral nutrition and possible interactions of abscisic and gibberellic acids. Plant Growth Regul 14:151–157

    CAS  Article  Google Scholar 

  • Sanz A, Llamas A, Ullrich CI (2009) Distinctive phytotoxic effects of Cd and Ni on membrane functionality. Plant Signal Behav 4:980–982

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277

    CAS  Article  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    CAS  Article  PubMed  Google Scholar 

  • Shepherd V, Beilby M, Shimmen T (2002) Mechanosensory ion channels in charophyte cells: the response to touch and salinity stress. Eur Biophys J 31:341–355

    CAS  Article  PubMed  Google Scholar 

  • Shimmen T, Mimura T, Kikuyama M, Tazawa M (1994) Characean cells as a tool for studying electrophysiological characteristics of plant-cells. Cell Struct Funct 19:263–278

    CAS  Article  PubMed  Google Scholar 

  • Sreekanth TVM, Nagajyothi PC, Lee KD, Prasad TNVK (2013) Occurrence, physiological responses and toxicity of nickel in plants. J Environ Sci Technol 10:1129–1140

    CAS  Article  Google Scholar 

  • Sukhov V, Nerush V, Lova LO, Vodeneev V (2011) Simulation of action potential propagation in plants. J Theor Biol 291:47–55

    Article  PubMed  Google Scholar 

  • Thakur S, Sharma S (2015) Characterization of seed germination, seedling growth, and associated metabolic responses of Brassica juncea L. cultivars to elevated nickel concentrations. Protoplasma. doi:10.1007/s00709-015-0835-0

    PubMed  Google Scholar 

  • Thiel G, Homann U, Plieth C (1997) Ion channel activity during the action potential in Chara: new insights with new techniques. J Exp Bot 48:609–622

    CAS  Article  PubMed  Google Scholar 

  • Trebacz K, Simonis W, Schonknecht G (1997) Effects of anion channel inhibitors on light-induced potential changes in the liverwort Conocephalum conicum. Plant Cell Physiol 38:550–557

    CAS  Article  Google Scholar 

  • Tsutsui I, Ta Ohkawa, Nagai R, Kishimoto U (1987) Role of calcium ion in the excitability and electrogenic pump activity of theChara corallina membrane: I. Effects of La3+, verapamil, EGTA, W-7, and TFP on the action potential. J Membrain Biol 96:65–73

    CAS  Article  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Volkov AG, Ranatunga DR (2006) Plants as environmental biosensors. Plant Signal Behav 1:105–115

    Article  PubMed  PubMed Central  Google Scholar 

  • Woolhouse HW (1983) Toxicity and tolerance in the responses of plants to metals. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology III, Ed 12/C. Springer, Berlin, pp 245–300

    Chapter  Google Scholar 

  • Yusuf M, Fariduddin Q, Hayat S, Ahmad A (2011) Nickel: an overview of uptake, essentiality and toxicity in plants. Bull Environ Contam Toxicol 86:1–17

    CAS  Article  PubMed  Google Scholar 

  • Zamponi GW, Bourinet E, Snutch TP (1996) Nickel block of a family of neuronal calcium channels: subtype- and subunit-dependent action at multiple sites. J Membr Biol 151:77–90

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Vidmantas Sakalauskas (Vilnius University) for technical support and Prof. Shanti S. Sharma (Department of Biosciences, Himachal Pradesh University, Shimla, India) for helpful discussion and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilma Kisnieriene.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kisnieriene, V., Lapeikaite, I., Sevriukova, O. et al. The effects of Ni2+ on electrical signaling of Nitellopsis obtusa cells. J Plant Res 129, 551–558 (2016). https://doi.org/10.1007/s10265-016-0794-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-016-0794-3

Keywords

  • Characeae
  • Membrane ion transport systems
  • Nickel toxicity
  • Plant electrical signaling