Skip to main content

A novel-type phosphatidylinositol phosphate-interactive, Ca-binding protein PCaP1 in Arabidopsis thaliana: stable association with plasma membrane and partial involvement in stomata closure

Abstract

The Ca2+-binding protein-1 (PCaP1) of Arabidopsis thaliana is a new type protein that binds to phosphatidylinositol phosphates and Ca2+-calmodulin complex as well as free Ca2+. Although biochemical properties, such as binding to ligands and N-myristoylation, have been revealed, the intracellular localization, tissue and cell specificity, integrity of membrane association and physiological roles of PCaP1 are unknown. We investigated the tissue and intracellular distribution of PCaP1 by using transgenic lines expressing PCaP1 linked with a green fluorescence protein (GFP) at the carboxyl terminus of PCaP1. GFP fluorescence was obviously detected in most tissues including root, stem, leaf and flower. In these tissues, PCaP1–GFP signal was observed predominantly in the plasma membrane even under physiological stress conditions but not in other organelles. The fluorescence was detected in the cytosol when the 25-residue N-terminal sequence was deleted from PCaP1 indicating essential contribution of N-myristoylation to the plasma membrane anchoring. Fluorescence intensity of PCaP1–GFP in roots was slightly decreased in seedlings grown in medium supplemented with high concentrations of iron for 1 week and increased in those grown with copper. In stomatal guard cells, PCaP1–GFP was strictly, specifically localized to the plasma membrane at the epidermal-cell side but not at the pore side. A T-DNA insertion mutant line of PCaP1 did not show marked phenotype in a life cycle except for well growth under high CO2 conditions. However, stomata of the mutant line did not close entirely even in high osmolarity, which usually induces stomata closure. These results suggest that PCaP1 is involved in the stomatal movement, especially closure process, in leaves and response to excessive copper in root and leaf as a mineral nutrient as a physiological role.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, Grill E, Schroeder JI (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411:1053–1057

    CAS  Article  PubMed  Google Scholar 

  • Asai N, Nakajima N, Kondo N, Kamada H (1999) The effect of osmotic stress on the solutes in guard cells of Vicia faba L. Plant Cell Physiol 40:843–849

    CAS  Article  Google Scholar 

  • Asai N, Nakajima N, Tamaoki M, Kamada H, Kondo N (2000) Role of malate synthesis mediated by phosphoenolpyruvate carboxylase in guard cells in the regulation of stomatal movement. Plant Cell Physiol 41:10–15

    CAS  Article  PubMed  Google Scholar 

  • Bak G, Lee EJ, Lee Y, Kato M, Segami S, Heven S, Maeshima M, Hwang JU, Lee Y (2013) A role of phosphatidylinositol 3,5-bisphosphate in vacuolar structure change in guard cells of closing stomata. Plant Cell 25:2202–2216

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Brearley J, Venis MA, Blatt MR (1997) The effect of elevated CO2 concentrations on K+ and anion channels of Vicia faba L. guard cells. Planta 203:145–154

    CAS  Article  Google Scholar 

  • Carlton JG, Cullen PJ (2005) Coincidence detection in phosphoinositide signaling. Trends Cell Biol 15:540–547

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  Article  PubMed  Google Scholar 

  • Connlolly EL, Guerinot ML (2002) Iron stress in plants. Genome Biol 3:1024.1–1024.4

    Google Scholar 

  • Daviére J-M, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151

    Article  PubMed  Google Scholar 

  • De Angeli A, Zhang J, Meyer S, Martinoia E (2013) AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis. Nat Commun 4:1804

    Article  PubMed  PubMed Central  Google Scholar 

  • De Falco TA, Bender KW, Snedden WA (2009) Breaking the code: Ca2+ sensors in plant signaling. Biochem J 425:27–40

    Google Scholar 

  • Eisinger W, Ehrhard D, Briggs W (2012) Microtubules are essential for gurad-cell function in Vicia and Arabidopsis. Mol Plant 5:301–610

    Google Scholar 

  • Greger M (2004) Metal availability, uptake, transport and accumulation in plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems, 2nd edn. Springer, Berlin, pp 1–27

    Chapter  Google Scholar 

  • Hanstein SM, Felle HH (2002) CO2-triggered chloride release from guard cells in intact fava bean leaves: kinetics of the onset of stomatal closure. Plant Physiol 130:940–950

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Hwang I, Sheen J, Müller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63:353–380

    CAS  Article  PubMed  Google Scholar 

  • Ide Y, Nagasaki N, Tomioka R, Suito M, Kamiya T, Maeshima M (2007) Molecular properties of a novel, hydrophilic cation-binding protein associated with the plasma membrane. J Exp Bot 58:1173–1183

    CAS  Article  PubMed  Google Scholar 

  • Kato M, Nagasaki-Takeuchi N, Ide Y, Maeshima M (2010a) An Arabidopsis hydrophilic Ca2+-binding protein with a PEVK-rich domain, PCaP2, is associated with the plasma membrane and interacts with calmodulin and phosphatidylinositol phosphates. Plant Cell Physiol 51:366–379

    CAS  Article  PubMed  Google Scholar 

  • Kato M, Nagasaki-Takeuchi N, Ide Y, Tomioka R, Maeshima M (2010b) PCaPs, possible regulators of PtdInsP signals on plasma membrane. Plant Signal Behav 5:848–850

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Kato M, Aoyama T, Maeshima M (2013) A Ca2+-binding protein PCaP2 located on the plasma membrane is involves in root hair development as a possible signal transducer. Plant J 74:690–700

    CAS  Article  PubMed  Google Scholar 

  • Kim TH, Bohmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–916

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Kleerekoper QK, Putkey JA (2009) PEP-19, an intrinsically disordered regulator of calmodulin signaling. J Biol Chem 284:7455–7464

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Lahav M, Abu-Abied M, Belausov E, Schwartz A, Sadot E (2004) Microtubules of guard cells are light sensitive. Plant Cell Physiol 45:573–582

    CAS  Article  PubMed  Google Scholar 

  • Lee M, Choi Y, Burla B, Kim Y-Y, Jeon B, Maeshima M, Yoo J-Y, Martinoia M, Lee Y (2008) The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nature Cell Biol 10:1217–1223

    CAS  Article  PubMed  Google Scholar 

  • Leivar P, Monte E (2014) PIFs: systemis integrators in plant development. Plant Cell 26:56–78

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Wang X, Qin T, Zhang Y, Liu X, Sun J, Zhou Y, Zhu L, Zhang Z, Yuan M, Mao T (2011) MDP25, a novel calcium regulatory protein, mediates hypocotyl cell elongation by destabilizing cortical microtubules in Arabidopsis. Plant Cell 23:4411–4427

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Luan S (2009) The CBL-CIPK network in plant calcium signaling. Trends Plant Sci 14:37–42

    CAS  Article  PubMed  Google Scholar 

  • Marcus AI, Moore RC, Cyr RJ (2001) The role of microtubules in guard cell function. Plant Physiol 125:387–395

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • McCormack E, Tsai YC, Braam J (2005) Handling calcium signaling: arabidopsis CaMs and CMLs. Trends Plant Sci 10:383–389

    CAS  Article  PubMed  Google Scholar 

  • McLaughlin S, Murray D (2005) Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438:605–611

    CAS  Article  PubMed  Google Scholar 

  • Medeiros DB, Martins SCV, Cavalcanti JHF, Daloso D, Martinoia E, Nunes-Nesi A, DaMatta F, Fernie AR, Araujo W (2016) Enhanced photosynthesis and growth in atquac1 knockout mutants are due to altered organic acid accumulation and an increase in both stomatal and mesophyll conductance. Plant Physiol 170:86–101. doi:10.1104/pp.15.01053

    Article  PubMed  Google Scholar 

  • Meijer HJ, Munnik T (2003) Phospholipid-based signaling in plants. Annu Rev Plant Biol 54:265–306

    CAS  Article  PubMed  Google Scholar 

  • Nagasaki N, Tomioka R, Maeshima M (2008) A hydrophilic cation-binding protein of Arabidopsis thaliana AtPCaP1 is localized to plasma membrane via N-myristoylation and interacts with calmodulin and the phosphatidylinositol phosphates, PtdIns(3,4,5)P 3 and PtdIns(3,5)P 2. FEBS J 275:2267–2282

    CAS  Article  PubMed  Google Scholar 

  • Nagasaki-Takeuchi N, Miyano M, Maeshima M (2008) A plasma membrane-associated protein of Arabidopsis thaliana AtPCaP1 binds copper ions and changes its higher order structure. J Biochem 144:487–497

    CAS  Article  PubMed  Google Scholar 

  • Nakagawa T, Suzuki T, Murata S et al (2007) Improved gateway binary vectors: high performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci Biotechnol Biochem 71:2095–2100

    CAS  Article  PubMed  Google Scholar 

  • Navarro L, Ziphel C, Rowland O, Keller I, Robatzek S, Boller T, Jones JDG (2004) The transcriptional innate immune response to flg22: interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol 135:1113–1128

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483–486

    CAS  Article  PubMed  Google Scholar 

  • Saji S, Bathula S, Kubo A, Tamaoki M, Kanna M, Aono M, Nakajima N, Nakaji T, Takeda T, Asayama M, Saji H (2008) Disruption of a gene encoding C4-dicarboxylate transporter-like protein increases ozone densitivity through deregulation of the stomatal response in Arabidopsis thaliana. Plant Cell Physiol 49:2–10

    CAS  Article  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    CAS  Article  PubMed  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Segami S, Makino S, Miyake A, Asaoka M, Maeshima M (2014) Dynamics of vacuoles and H+-pyrophosphatase visualized by monomeric green fluorescent protein in Arabidopsis: artifactual bulbs and native intravacuolar spherical structures. Plant Cell 26:3416–3434

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchiso D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:1985–2994

    Article  Google Scholar 

  • Tanaka N, Kato M, Tomioka R, Kurata R, Fukao Y, Aoyama T, Maeshima M (2014) Characteristics of a root hair-less line of Arabidopsis thaliana under physiological stresses. J Exp Bot 65:1497–1512

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Vahisalu T, Kollist H, Wang Y-F, Nishimura N, Chan W-Y, Valerio G, Lamminmäki A, Brosché M, Moldau H, Desikan R, Schroeder JI, Kangasjärvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signaling. Nature 452:487–491

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Vijayapalani P, Maeshima M, Nagasaki-Takekuchi N, Miller WA (2012) Interaction of the trans-frame potyvirus protein P3 N-PIPO with host protein PCaP1 facilitates potyvirus movement. PLoS Pathogen 8:e1002639

    CAS  Article  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2:e718

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue HW, Chen X, Mei Y (2009) Function and regulation of phospholipid signalling in plants. Biochem J 421:145–156

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Costa A, Leonhardt N, Siegel RS, Schroeder JI (2008) Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Meth 4:6

    Article  Google Scholar 

  • Young JJ, Mehta S, Israelsson M, Godoski J, Grill E, Schroeder JI (2006) CO2 signaling in guard cells: calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant. Proc Natl Acad Sci USA 103:7506–7511

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakely EJ, Jones JD, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Toshinori Kinoshita and Yuki Hayashi (Nagoya University) for their valuable advice on stomatal movement and Drs. Yoichi Nakanishi and Miki Kawachi (Nagoya University) for their advices. This work was supported by Grants-in-Aid from the Japan Society for the Promotion of Science (Grants 26252011, 26113506) and Japan Science and Technology Agency A-Step (AS242Z02907N) to M.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Maeshima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 587 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nagata, C., Miwa, C., Tanaka, N. et al. A novel-type phosphatidylinositol phosphate-interactive, Ca-binding protein PCaP1 in Arabidopsis thaliana: stable association with plasma membrane and partial involvement in stomata closure. J Plant Res 129, 539–550 (2016). https://doi.org/10.1007/s10265-016-0787-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-016-0787-2

Keywords

  • Arabidopsis thaliana
  • Calcium-binding protein
  • Phosphatidylinositol phosphate
  • Plasma membrane
  • Signal transducing protein
  • Stomata