Skip to main content
Log in

Over-expression of Arabidopsis thaliana SFD1/GLY1, the gene encoding plastid localized glycerol-3-phosphate dehydrogenase, increases plastidic lipid content in transgenic rice plants

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Lipids are the major constituents of all membranous structures in plants. Plants possess two pathways for lipid biosynthesis: the prokaryotic pathway (i.e., plastidic pathway) and the eukaryotic pathway (i.e., endoplasmic-reticulum (ER) pathway). Whereas some plants synthesize galactolipids from diacylglycerol assembled in the plastid, others, including rice, derive their galactolipids from diacylglycerols assembled by the eukaryotic pathway. Arabidopsis thaliana glycerol-3-phosphate dehydrogenase (G3pDH), coded by SUPPRESSOR OF FATTY ACID DESATURASE 1 (SFD1; alias GLY1) gene, catalyzes the formation of glycerol 3-phosphate (G3p), the backbone of many membrane lipids. Here SFD1 was introduced to rice as a transgene. Arabidopsis SFD1 localizes in rice plastids and its over-expression increases plastidic membrane lipid content in transgenic rice plants without any major impact on ER lipids. The results suggest that over-expression of plastidic G3pDH enhances biosynthesis of plastid-localized lipids in rice. Lipid composition in the transgenic plants is consistent with increased phosphatidylglycerol synthesis in the plastid and increased galactolipid synthesis from diacylglycerol produced via the ER pathway. The transgenic plants show a higher photosynthetic assimilation rate, suggesting a possible application of this finding in crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

DAG:

Diacylglycerol

DGDG:

Digalactosyldiacylglycerol

ER:

Endoplasmic reticulum

FA:

Fatty acid

GLC:

Gas–liquid chromatography

G3p:

Glycerol 3-phosphate

G3pDH:

Glycerol-3-phosphate dehydrogenase

IRGA:

Infrared gas analyzer

MGDG:

Monogalactosyldiacylglycerol

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

SFD1 :

SUPPRESSOR OF FATTY ACID DESATURASE 1

TAG:

Triacylglycerol

References

  • Allen CF, Good P, Holton RW (1970) Lipid composition of cyanidium. Plant Physiol 46:748–751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Prog Lipid Res 49:235–249. doi:10.1016/j.plipres.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  • Benson AA (1971) Lipids of chloroplasts. In: Gibbs M (ed) Structure and function of chloroplasts. Springer Verlag, Berlin, pp 129–148

    Chapter  Google Scholar 

  • Browse J (2010) Plant science. Saving the bilayer. Science 330:185–186. doi:10.1126/science.1196737

    Article  CAS  PubMed  Google Scholar 

  • Browse J, Warwick N, Somerville CR, Slack CR (1986) Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the ‘16:3’ plant Arabidopsis thaliana. Biochem J 235:25–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chanda B, Xia Y, Mandal MK, Yu K, Sekine KT, Gao QM, Selote D, Hu Y, Stromberg A, Navarre D, Kachroo A, Kachroo P (2011) Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat Genet 43:421–427. doi:10.1038/ng.798

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Songkumarn P, Liu J, Wang GL (2009) A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiol 150:1111–1121. doi:10.1104/pp.109.137125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Domonkos I, Laczko-Dobos H, Gombos Z (2008) Lipid-assisted protein–protein interactions that support photosynthetic and other cellular activities. Prog Lipid Res 47:422–435. doi:10.1016/j.plipres.2008.05.003

    Article  CAS  PubMed  Google Scholar 

  • Dormann P, Benning C (2002) Galactolipids rule in seed plants. Trend Plant Sci 7:112–118. doi:10.1016/S1360-1385(01)02216-6

    Article  CAS  Google Scholar 

  • Dubots E, Audry M, Yamaryo Y, Bastien O, Ohta H, Breton C, Marechal E, Block MA (2010) Activation of the chloroplast monogalactosyldiacylglycerol synthase MGD1 by phosphatidic acid and phosphatidylglycerol. J Biol Chem 285:6003–6011. doi:10.1074/jbc.M109.071928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eastmond PJ (2004) Glycerol-insensitive Arabidopsis mutants: gli1 seedlings lack glycerol kinase, accumulate glycerol and are more resistant to abiotic stress. Plant J Cell Mol Biol 37:617–625

    Article  CAS  Google Scholar 

  • Heinz E, Roughan PG (1983) Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiol 72:273–279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holzl G, Witt S, Gaude N, Melzer M, Schottler MA, Dormann P (2009) The role of diglycosyl lipids in photosynthesis and membrane lipid homeostasis in arabidopsis. Plant Physiol 150:1147–1159. doi:10.1104/pp.109.139758

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones MR (2007) Lipids in photosynthetic reaction centres: structural roles and functional holes. Prog Lipid Res 46:56–87. doi:10.1016/j.plipres.2006.06.001

    Article  CAS  PubMed  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature 411:909–917. doi:10.1038/35082000

    Article  CAS  PubMed  Google Scholar 

  • Kang L, Li J, Zhao T, Xiao F, Tang X, Thilmony R, He S, Zhou JM (2003) Interplay of the Arabidopsis nonhost resistance gene NHO1 with bacterial virulence. Proc Natl Acad Sci USA 100:3519–3524. doi:10.1073/pnas.0637377100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lorenc-Kukula K, Chaturvedi R, Roth M, Welti R, Shah J (2012) Biochemical and molecular-genetic characterization of sfd1’s involvement in lipid metabolism and defense signaling. Front Plant Sci 3:26. doi:10.3389/fpls.2012.00026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu M, Tang X, Zhou JM (2001) Arabidopsis NHO1 is required for general resistance against Pseudomonas bacteria. Plant Cell 13:437–447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maguire TL, Collins GC, Sedgley M (1991) A modified CTAB DNA extraction procedure for plants belonging to the family proteaceae. Plant Mol Biol Report 12:106–109

    Article  Google Scholar 

  • Mandal MK, Chanda B, Xia Y, Yu K, Sekine KT, Gao QM, Selote D, Kachroo A, Kachroo P (2011) Glycerol-3-phosphate and systemic immunity. Plant Signal Beh 6:1871–1874. doi:10.4161/psb.6.11.17901

    Article  CAS  Google Scholar 

  • Miquel M, Cassagne C, Browse J (1998) A new class of Arabidopsis mutants with reduced hexadecatrienoic acid fatty acid levels. Plant Physiol 117(3):923–930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mongrand S, Bessoule JJ, Cabantous F, Cassagne C (1998) The C16:3/C18:3 fatty acid balance in photosynthetic tissues from 468 plant species. Phytochemistry 49:1049–1064

    Article  CAS  Google Scholar 

  • Mukherjee KD (1983) Lipid biosynthesis in developing mustard seed: formation of triacylglycerols from endogenous and exogenous fatty acids. Plant Physiol 73:929–934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nandi A, Krothapalli K, Buseman CM, Li M, Welti R, Enyedi A, Shah J (2003) Arabidopsis sfd mutants affect plastidic lipid composition and suppress dwarfing, cell death, and the enhanced disease resistance phenotypes resulting from the deficiency of a fatty acid desaturase. Plant Cell 15:2383–2398. doi:10.1105/tpc.015529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nandi A, Welti R, Shah J (2004) The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell 16:465–477. doi:10.1105/tpc.016907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parkhill J-P, Maillet G, Cullen JJ (2001) Fluorescence-based maximal quantum yield for PSII as a diagnositic tool of nutrient stress. J Phycol 37:517–529

    Article  Google Scholar 

  • Perry HJ, Bligny R, Gout E, Harwood JL (1999) Changes in Kennedy pathway intermediates associated with increased triacylglycerol synthesis in oil-seed rape. Phytochemistry 52:799–804. doi:10.1016/S0031-9422(99)00294-0

    Article  CAS  Google Scholar 

  • Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89:27–41. doi:10.1007/s11120-006-9065-9

    Article  CAS  PubMed  Google Scholar 

  • Roughan PG, Batt RD (1969) The glycerolipid composition of leaves. Phytochemistry 8:363–369

    Article  CAS  Google Scholar 

  • Shen W, Wei Y, Dauk M, Tan Y, Taylor DC, Selvaraj G, Zou J (2006) Involvement of a glycerol-3-phosphate dehydrogenase in modulating the NADH/NAD + ratio provides evidence of a mitochondrial glycerol-3-phosphate shuttle in Arabidopsis. Plant Cell 18:422–441. doi:10.1105/tpc.105.039750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shen W, Li JQ, Dauk M, Huang Y, Periappuram C, Wei Y, Zou J (2010) Metabolic and transcriptional responses of glycerolipid pathways to a perturbation of glycerol 3-phosphate metabolism in Arabidopsis. J Biol Chem 285:22957–22965. doi:10.1074/jbc.M109.097758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shimojima M, Watanabe T, Madoka Y, Koizumi R, Yamamoto MP, Masuda K, Yamada K, Masuda S, Ohta H (2013) Differential regulation of two types of monogalactosyldiacylglycerol synthase in membrane lipid remodeling under phosphate-limited conditions in sesame plants. Front Plant Sci 4:469. doi:10.3389/fpls.2013.00469

    Article  PubMed Central  PubMed  Google Scholar 

  • Singh S, Giri MK, Singh PK, Siddiqui A, Nandi AK (2013) Down-regulation of OsSAG12-1 results in enhanced senescence and pathogen-induced cell death in transgenic rice plants. J Biosci 38:583–592

    Article  CAS  PubMed  Google Scholar 

  • Stumpf PK (1984) Plant lipid biosynthesis in 1959 and 1984. J Lipid Res 25:1508–1510

    CAS  PubMed  Google Scholar 

  • Toriyama S, Hinata K, Nishida I, Murata N (1988) Prominent difference of glycerolipids among anther walls, pollen grains adn leaves of rice and maize. Plant Cell Physiol 29:615–618

    CAS  Google Scholar 

  • Vigeolas H, Waldeck P, Zank T, Geigenberger P (2007) Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol J 5:431–441

    Article  CAS  PubMed  Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387. doi:10.1007/BF00384257

    Article  Google Scholar 

  • Wang H, Chen C, Xu Y, Jiang R, Han Y, Xu Z, Chong K (2004) A practical vector for efficient knockdown of gene expression in rice (Oryza sativa L.). Plant Mol Biol Report 22:409–417

    Article  CAS  Google Scholar 

  • Wang Y, Wu J, Kim SG, Kim ST, Kang KY (2013) A transient gene expression protocol for subcellular protein localization and protein secretion analyses in rice. Protoc Exch. doi:10.1038/protex.2013.064

  • Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou HE, Rajashekar CB, Williams TD, Wang X (2002) Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002. doi:10.1074/jbc.M205375200

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Soares JM, Mandal MK, Wang C, Chanda B, Gifford AN, Fowler JS, Navarre D, Kachroo A, Kachroo P (2013) A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity. Cell Rep 3:1266–1278. doi:10.1016/j.celrep.2013.03.030

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Method 7:30. doi:10.1186/1746-4811-7-30

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the DST-purse, Capacity Build-up and UGC resource network funds to AKN. SS and ZZB obtained fellowships from CSIR and ICMR respectively. We acknowledge Arabidopsis Biological Resource Centre, Ohio State University, USA for SFD1 cDNA. The lipid profile data were acquired at Kansas Lipidomics Research Center (KLRC). We thank Mary Roth of KLRC for her technical work and Ruth Welti for critical reading and editing of the manuscript. Instrument acquisition and method development at KLRC were supported by NSF grants MCB 0455318, MCB 0920663, DBI 0521587, DBI 1228622, Kansas INBRE (P20 GM103418 from the National Institute of General Medical Sciences), NSF EPSCoR grant EPS-0236913, Kansas Technology Enterprise Corporation, and Kansas State University. We also acknowledge B.C. Tripathy and Amarchand Kunawat for help in photosynthesis related experiments and Tripti Panwar for help in microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashis Kumar Nandi.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

V. Singh and P. K. Singh contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Singh, P.K., Siddiqui, A. et al. Over-expression of Arabidopsis thaliana SFD1/GLY1, the gene encoding plastid localized glycerol-3-phosphate dehydrogenase, increases plastidic lipid content in transgenic rice plants. J Plant Res 129, 285–293 (2016). https://doi.org/10.1007/s10265-015-0781-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-015-0781-0

Keywords

Profiles

  1. Zeeshan Zahoor Banday
  2. Ashis Kumar Nandi