Advertisement

Journal of Plant Research

, Volume 129, Issue 2, pp 167–174 | Cite as

Arabidopsis phot1 and phot2 phosphorylate BLUS1 kinase with different efficiencies in stomatal opening

  • Atsushi TakemiyaEmail author
  • Ken-ichiro Shimazaki
JPR Symposium The Cutting Edge of Photoresponse Mechanisms: Photoreceptor and Signaling Mechanism

Abstract

In Arabidopsis thaliana, phototropins (phot1 and phot2), light-activated receptor kinases, redundantly regulate various photoresponses such as phototropism, chloroplast photorelocation movement, stomatal opening, and leaf flattening. However, it is still unclear how phot1 and phot2 signals are integrated into a common target and regulate physiological responses. In the present study, we provide evidence that phot1 and phot2 phosphorylate BLUE LIGHT SIGNALING1 (BLUS1) kinase as a common substrate in stomatal opening. Biochemical analysis revealed that the recombinant phot2 protein directly phosphorylated BLUS1 in vitro in a blue light-dependent manner, as reported for phot1. BLUS1 phosphorylation was observed in both phot1 and phot2 mutants, and phot2 mutant exhibited higher phosphorylation of BLUS1 than did phot1 mutant. Transgenic plants expressing phot1-GFP (P1G) and phot2-GFP (P2G) at a similar level under the PHOT2 promoter demonstrated that P1G initiated higher phosphorylation of BLUS1 than P2G, suggesting that phot1 phosphorylates BLUS1 more efficiently. Similarly, P1G mediated a higher activation of the plasma membrane H+-ATPase and stomatal opening than P2G, indicating that the phosphorylation status of BLUS1 is a key determinant of physiological response. Together, these findings provide insights into the signal integration and different properties of phot1 and phot2 signaling.

Keywords

Arabidopsis Blue light Phosphorylation Phototropin Stomata 

Notes

Acknowledgments

We thank Akira Nagatani, Yusuke Aihara, and Tomomi Suzuki for providing P2-P1G and P2-P2G lines and valuable discussion; and Sahara Kawakami and Emi Abe for technical assistance. This work was supported by JSPS KAKENHI Grant Number 26711019 and 15K14552 (to A.T.) and 26251032 (to K.S.), MEXT KAKENHI Grant Number 25120719 (to A.T.), and Cooperative Research Grant of the Plant Transgenic Design Initiative, Gene Research Center, University of Tsukuba (to A. T.).

References

  1. Aihara Y, Tabata R, Suzuki T, Shimazaki K, Nagatani A (2008) Molecular basis of the functional specificities of phototropin 1 and 2. Plant J 56:364–375CrossRefPubMedGoogle Scholar
  2. Boccalandro HE, De Simone SN, Bergmann-Honsberger A, Schepens I, Fankhauser C, Casal JJ (2008) PHYTOCHROME KINASE SUBSTRATE1 regulates root phototropism and gravitropism. Plant Physiol 146:108–115PubMedCentralCrossRefPubMedGoogle Scholar
  3. Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45CrossRefPubMedGoogle Scholar
  4. Christie JM, Salomon M, Nozue K, Wada M, Briggs WR (1999) LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mono- nucleotide. Proc Natl Acad Sci USA 96:8779–8783PubMedCentralCrossRefPubMedGoogle Scholar
  5. Christie JM, Swartz TE, Bogomolni R, Briggs WR (2002) Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function. Plant J 32:205–219CrossRefPubMedGoogle Scholar
  6. Christie JM, Blackwood L, Petersen J, Sullivan S (2015) Plant flavoprotein photoreceptors. Plant Cell Physiol 56:401–413PubMedCentralCrossRefPubMedGoogle Scholar
  7. de Carbonnel M, Davis P, Roelfsema MR, Inoue S, Schepens I, Lariguet P, Geisler M, Shimazaki K, Hangarter R, Fankhauser C (2010) The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning. Plant Physiol 152:1391–1405PubMedCentralCrossRefPubMedGoogle Scholar
  8. Demarsy E, Fankhauser C (2009) Higher plants use LOV to perceive blue light. Curr Opin Plant Biol 12:69–74CrossRefPubMedGoogle Scholar
  9. Demarsy E, Schepens I, Okajima K, Hersch M, Bergmann S, Christie JM, Shimazaki K, Tokutomi S, Fankhauser C (2012) Phytochrome Kinase Substrate 4 is phosphorylated by the phototropin 1 photoreceptor. EMBO J 31:3457–3467PubMedCentralCrossRefPubMedGoogle Scholar
  10. Doi M, Shigenaga A, Emi T, Kinoshita T, Shimazaki K (2004) A transgene encoding a blue-light receptor, phot1, restores blue-light responses in the Arabidopsis phot1 phot2 double mutant. J Exp Bot 55:517–523CrossRefPubMedGoogle Scholar
  11. Folta KM, Kaufman LS (2003) Phototropin 1 is required for high-fluence blue-light-mediated mRNA destabilization. Plant Mol Biol 51:609–618CrossRefPubMedGoogle Scholar
  12. Folta KM, Lieg EJ, Durham T, Spalding EP (2003) Primary inhibition of hypocotyl growth and phototropism depend differently on phototropin-mediated increases in cytoplasmic calcium induced by blue light. Plant Physiol 133:1464–1470PubMedCentralCrossRefPubMedGoogle Scholar
  13. Freddolino PL, Gardner KH, Schulten K (2013) Signaling mechanisms of LOV domains: new insights from molecular dynamics studies. Photochem Photobiol Sci 12:1158–1170PubMedCentralCrossRefPubMedGoogle Scholar
  14. Harada A, Takemiya A, Inoue S, Sakai T, Shimazaki K (2013) Role of RPT2 in leaf positioning and flattening and a possible inhibition of phot2 signaling by phot1. Plant Cell Physiol 54:36–47CrossRefPubMedGoogle Scholar
  15. Harper SM, Neil LC, Gardner KH (2003) Structural basis of a phototropin light switch. Science 301:1541–1544CrossRefPubMedGoogle Scholar
  16. Higa T, Suetsugu N, Kong SG, Wada M (2014) Actin-dependent plastid movement is required for motive force generation in directional nuclear movement in plants. Proc Natl Acad Sci USA 111:4327–4331PubMedCentralCrossRefPubMedGoogle Scholar
  17. Huala E, Oeller PW, Liscum E, Han IS, Larsen E, Briggs WR (1997) Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278:2120–2123CrossRefPubMedGoogle Scholar
  18. Inoue S, Kinoshita T, Matsumoto M, Nakayama KI, Doi M, Shimazaki K (2008a) Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc Natl Acad Sci USA 105:5626–5631PubMedCentralCrossRefPubMedGoogle Scholar
  19. Inoue S, Kinoshita T, Takemiya A, Doi M, Shimazaki K (2008b) Leaf positioning of Arabidopsis in response to blue light. Mol Plant 1:15–26CrossRefPubMedGoogle Scholar
  20. Inoue S, Takemiya A, Shimazaki K (2010) Phototropin signaling and stomatal opening as a model case. Curr Opin Plant Biol 13:587–593CrossRefPubMedGoogle Scholar
  21. Iwabuchi K, Sakai T, Takagi S (2007) Blue light-dependent nuclear positioning in Arabidopsis thaliana leaf cells. Plant Cell Physiol 48:1291–1298CrossRefPubMedGoogle Scholar
  22. Jarillo JA, Gabrys H, Capel J, Alonso JM, Ecker JR, Cashmore AR (2001) Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410:952–954CrossRefPubMedGoogle Scholar
  23. Jones MA, Feeney KA, Kelly SM, Christie JM (2007) Mutational analysis of phototropin 1 provides insights into the mechanism underlying LOV2 signal transmission. J Biol Chem 282:6405–6414CrossRefPubMedGoogle Scholar
  24. Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–2141CrossRefPubMedGoogle Scholar
  25. Kami C, Allenbach L, Zourelidou M, Ljung K, Schutz F, Isono E, Watahiki MK, Yamamoto KT, Schwechheimer C, Fankhauser C (2014) Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport. Plant J 77:393–403CrossRefPubMedGoogle Scholar
  26. Kinoshita T, Hayashi Y (2011) New insights into the regulation of stomatal opening by blue light and plasma membrane H+-ATPase. Int Rev Cell Mol Biol 289:89–115CrossRefPubMedGoogle Scholar
  27. Kinoshita T, Shimazaki K (1999) Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J 18:5548–5558PubMedCentralCrossRefPubMedGoogle Scholar
  28. Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K (2001) Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414:656–660CrossRefPubMedGoogle Scholar
  29. Kong SG, Suzuki T, Tamura K, Mochizuki N, Hara-Nishimura I, Nagatani A (2006) Blue light-induced association of phototropin 2 with the Golgi apparatus. Plant J 45:994–1005CrossRefPubMedGoogle Scholar
  30. Kong SG, Kinoshita T, Shimazaki K, Mochizuki N, Suzuki T, Nagatani A (2007) The C-terminal kinase fragment of Arabidopsis phototropin 2 triggers constitutive phototropin responses. Plant J 51:862–873CrossRefPubMedGoogle Scholar
  31. Kong SG, Suetsugu N, Kikuchi S, Nakai M, Nagatani A, Wada M (2013) Both phototropin 1 and 2 localize on the chloroplast outer membrane with distinct localization activity. Plant Cell Physiol 54:80–92CrossRefPubMedGoogle Scholar
  32. Kozuka T, Kong SG, Doi M, Shimazaki K, Nagatani A (2011) Tissue-autonomous promotion of palisade cell development by phototropin 2 in Arabidopsis. Plant Cell 23:3684–3695PubMedCentralCrossRefPubMedGoogle Scholar
  33. Lariguet P, Dunand C (2005) Plant photoreceptors: phylogenetic overview. J Mol Evol 61:559–569CrossRefPubMedGoogle Scholar
  34. Lariguet P, Schepens I, Hodgson D, Pedmale UV, Trevisan M, Kami C, de Carbonnel M, Alonso JM, Ecker JR, Liscum E, Fankhauser C (2006) PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism. Proc Natl Acad Sci USA 103:10134–10139PubMedCentralCrossRefPubMedGoogle Scholar
  35. Lascève G, Leymarie J, Olney MO, Liscum E, Christie JM, Vavasseur A, Briggs WR (1999) Arabidopsis contains at least four independent blue-light-activated signal transduction pathways. Plant Physiol 120:605–614PubMedCentralCrossRefPubMedGoogle Scholar
  36. Li FW, Rothfels CJ, Melkonian M, Villarreal JC, Stevenson DW, Graham SW, Wong GK, Mathews S, Pryer KM (2015) The origin and evolution of phototropins. Front Plant Sci 6:637PubMedCentralPubMedGoogle Scholar
  37. Matsuoka D, Tokutomi S (2005) Blue light-regulated molecular switch of Ser/Thr kinase in phototropin. Proc Natl Acad Sci USA 102:13337–13342PubMedCentralCrossRefPubMedGoogle Scholar
  38. Moni A, Lee AY, Briggs WR, Han IS (2015) The blue light receptor Phototropin 1 suppresses lateral root growth by controlling cell elongation. Plant Biol 17:34–40CrossRefPubMedGoogle Scholar
  39. Okajima K, Kashojiya S, Tokutomi S (2012) Photosensitivity of kinase activation by blue light involves the lifetime of a cysteinyl-flavin adduct intermediate, S390, in the photoreaction cycle of the LOV2 domain in phototropin, a plant blue light receptor. J Biol Chem 287:40972–40981PubMedCentralCrossRefPubMedGoogle Scholar
  40. Okajima K, Aihara Y, Takayama Y, Nakajima M, Kashojiya S, Hikima T, Oroguchi T, Kobayashi A, Sekiguchi Y, Yamamoto M, Suzuki T, Nagatani A, Nakasako M, Tokutomi S (2014) Light-induced conformational changes of LOV1 (light oxygen voltage-sensing domain 1) and LOV2 relative to the kinase domain and regulation of kinase activity in Chlamydomonas phototropin. J Biol Chem 289:413–422PubMedCentralCrossRefPubMedGoogle Scholar
  41. Pfeifer A, Mathes T, Lu Y, Hegemann P, Kottke T (2010) Blue light induces global and localized conformational changes in the kinase domain of full-length phototropin. Biochemistry 49:1024–1032CrossRefPubMedGoogle Scholar
  42. Sakai T, Wada T, Ishiguro S, Okada K (2000) RPT2: a signal transducer of the phototropic response in Arabidopsis. Plant Cell 12:225–236PubMedCentralCrossRefPubMedGoogle Scholar
  43. Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA 98:6969–6974PubMedCentralCrossRefPubMedGoogle Scholar
  44. Sakamoto K, Briggs WR (2002) Cellular and subcellular localization of phototropin 1. Plant Cell 14:1723–1735PubMedCentralCrossRefPubMedGoogle Scholar
  45. Salomon M, Christie JM, Knieb E, Lempert U, Briggs WR (2000) Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39:9401–9410CrossRefPubMedGoogle Scholar
  46. Shimazaki K, Doi M, Assmann SM, Kinoshita T (2007) Light regulation of stomatal movement. Annu Rev Plant Biol 58:219–247CrossRefPubMedGoogle Scholar
  47. Suetsugu N, Wada M (2013) Evolution of three LOV blue light receptor families in green plants and photosynthetic stramenopiles: phototropin, ZTL/FKF1/LKP2 and aureochrome. Plant Cell Physiol 54:8–23CrossRefPubMedGoogle Scholar
  48. Swartz TE, Corchnoy SB, Christie JM, Lewis JW, Szundi I, Briggs WR, Bogomolni RA (2001) The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J Biol Chem 276:36493–36500CrossRefPubMedGoogle Scholar
  49. Takeda K, Nakasone Y, Zikihara K, Tokutomi S, Terazima M (2013) Dynamics of the amino-terminal and carboxyl-terminal helices of Arabidopsis phototropin 1 LOV2 studied by the transient grating. J Phys Chem B 117:15606–15613CrossRefPubMedGoogle Scholar
  50. Takemiya A, Inoue S, Doi M, Kinoshita T, Shimazaki K (2005) Phototropins promote plant growth in response to blue light in low light environments. Plant Cell 17:1120–1127PubMedCentralCrossRefPubMedGoogle Scholar
  51. Takemiya A, Kinoshita T, Asanuma M, Shimazaki K (2006) Protein phosphatase 1 positively regulates stomatal opening in response to blue light in Vicia faba. Proc Natl Acad Sci USA 103:13549–13554PubMedCentralCrossRefPubMedGoogle Scholar
  52. Takemiya A, Sugiyama N, Fujimoto H, Tsutsumi T, Yamauchi S, Hiyama A, Tada Y, Christie JM, Shimazaki K (2013a) Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. Nat Commun 4:2094CrossRefPubMedGoogle Scholar
  53. Takemiya A, Yamauchi S, Yano T, Ariyoshi C, Shimazaki K (2013b) Identification of a regulatory subunit of protein phosphatase 1 which mediates blue light signaling for stomatal opening. Plant Cell Physiol 54:24–35CrossRefPubMedGoogle Scholar
  54. Takemiya A, Doi A, Yoshida S, Okajima K, Tokutomi S, Shimazaki K (2015) Reconstitution of an initial step of phototropin signaling in stomatal guard cells. Plant Cell Physiol In pressGoogle Scholar
  55. Ueno K, Kinoshita T, Inoue S, Emi T, Shimazaki K (2005) Biochemical characterization of plasma membrane H+-ATPase activation in guard cell protoplasts of Arabidopsis thaliana in response to blue light. Plant Cell Physiol 46:955–963CrossRefPubMedGoogle Scholar
  56. Zayner JP, Antoniou C, Sosnick TR (2012) The amino-terminal helix modulates light-activated conformational changes in AsLOV2. J Mol Biol 419:61–74PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Biology, Faculty of ScienceKyushu UniversityFukuokaJapan

Personalised recommendations