Journal of Plant Research

, Volume 129, Issue 2, pp 209–223 | Cite as

The oldest Mahonia (Berberidaceae) fossil from East Asia and its biogeographic implications

  • Jian Huang
  • Tao Su
  • Julie Lebereton-Anberrée
  • Shi-Tao Zhang
  • Zhe-Kun Zhou
Regular Paper


Interpretation of the biogeography of the genus Mahonia (Berberidaceae) is limited by the lack of fossil records in East Asia. Compressed fossil foliage, described here as Mahonia mioasiatica sp. nov., were collected from the Upper Miocene Xiaolongtan Formation in Wenshan, Yunnan, southwest China. These specimens represent the oldest reliable fossil record of Mahonia in East Asia. This new fossil species shows a general similarity to Group Orientales and is most similar to the extant eastern Asian Mahonia conferta. Considering other fossil evidence of Mahonia, we propose a migration route of this genus to Asia over the North Atlantic Land Bridge rather than the Bering Land Bridge. Our results also suggest that North America, Europe and East Asia have been successive centers of diversity for the genus, as a consequence of diversification in Group Orientales potentially related to historical climate change.


Berberidaceae Biogeography East Asia Miocene Mahonia Southwestern China 



We thank members from the Paleoecology Research Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences (XTBG, CAS) for fossil collection; thank Professor Steven Manchester from Florida Museum of Natural History for the suggestions of fossil identification. The authors also thank Mr. B. Pan from XTBG for extant plants sample collecting, thanks to Central Lab of XTBG for microscope photographing of fossils. This work was supported by the National Natural Science Foundation of China (No. 41372035, No. U1502231) and the National Key Basic Research Project (“973” Project, No. 2012CB821900).

Supplementary material

10265_2015_775_MOESM1_ESM.xlsx (15 kb)
Supplementary material 1 (XLSX 14 kb)


  1. Ahrendt LWA (1961) Berberis and Mahonia. J Linn Soc Lond Bot 57:1–410CrossRefGoogle Scholar
  2. Arnold CA (1936) Some fossil species of Mahonia from the Tertiary of eastern and southeastern Oregon. Contributions from The Museum of Paleontology, University Of Michigan vol. 5, pp 57–66Google Scholar
  3. Auge H, Brandl R (1997) Seedling recruitment in the invasive clonal shrub, Mahonia aquifolium Pursh (Nutt.). Oecologia 110:205–211CrossRefGoogle Scholar
  4. Axelrod DI (1964) The Miocene Trapper Creek flora of southern Idaho. University of California Press, DavisGoogle Scholar
  5. Axelrod DI (1985) Miocene floras from the Middlegate Basin, west-central Nevada. University of California Press, DavisGoogle Scholar
  6. Axelrod DI (1987) The late Oligocene Creede flora, Colorado. University of California Press, DavisGoogle Scholar
  7. Axelrod DI (1998) The Oligocene Haynes creek flora of eastern Idaho. University of California Press, DavisGoogle Scholar
  8. Becker HF (1959) A new species of Mahonia from the Oligocene Ruby flora of southwestern Montana. Contributions from the Museum of Paleontology, University Of Michigan, vol. 15, pp 33–38Google Scholar
  9. Becker HF (1962) Two new species of Mahonia from the Grant-Horse Prairie Basin in southwestern Montana. Bull Torrey Bot Club 114–117Google Scholar
  10. Becker HF (1969) Fossil plants of the Tertiary Beaverhead Basins in southwestern Montana. Palaeontogr Abt B 1–142Google Scholar
  11. Becker HF (1972) The Metzel Ranch flora of the upper Ruby River basin, southwestern Montana. Palaeontogr Abt B 1–61Google Scholar
  12. Billings WD (1970) Plants, man, and the ecosystem. Wadsworth Publishing Company Inc, BelmontGoogle Scholar
  13. Blakey R (2010) Colorado plateau stratigraphy and geology and global and regional paleogeography. NAU Geol. Available:
  14. Boufford DE, Spongberg S (1983) Eastern Asian-eastern North American phytogeographical relationships—a history from the time of Linnaeus to the twentieth century. Ann Mo Bot Gard 423–439Google Scholar
  15. Bureau of Geology and Mineral Resources Yunnan Province (1990) Regional Geology of Yunnan Province. Geology Press, Beijing (in Chinese) Google Scholar
  16. Dong W, Deng T (2001) Stratigraphy and paleoenvironment of upper Miocene Xiaolongtan basin, Kaiyuan, Yunnan. 8th Annual Conference of Chinese Vertebrate Paleontology. Ocean Press, pp 91–100 (in Chinese) Google Scholar
  17. Donoghue MJ, Bell CD, Li J (2001) Phylogenetic patterns in Northern Hemisphere plant geography. Int J Plant Sci 162:S41–S52CrossRefGoogle Scholar
  18. Ellis B, Daly DC, Hickey LJ, Johnson KR, Mitchell JD, Wilf P, Wing SL (2009) Manual of leaf architecture. Cornell University Press, New YorkGoogle Scholar
  19. Fang J, Wang Z, Tang Z (2011) Atlas of woody plants in China: distribution and climate. Higher Education Press, BeijingCrossRefGoogle Scholar
  20. Geissert F, Gregor HJ, Mai DH, Boenigk W, Guenther T (1990) Die “Saugbaggerflora”, eine Frucht und Samenflora aus dem Grenzbereich Miozaen—Pliozaen von Sessenheim im Elsass (Frankreich). Documenta Naturae 57:1–207 (in German) Google Scholar
  21. Givulescu R (1979) Un rest de Mahonia bazaltica n. sp. din Pleistocenul inferior de la Sanovita-Lucaret (Banat). Dari de Seama ale Sedintelor Comitetului Geologic 67:127–130 (in Polish) Google Scholar
  22. Güner TH, Denk T (2012) The genus Mahonia in the Miocene of Turkey: Taxonomy and biogeographic implications. Rev Palaeobot Palyno 175:32–46CrossRefGoogle Scholar
  23. Guo S-X, Zhou Z-K (1992) The Mega fossil Legumes from China. In: Dilcher DL, Herendeen PS (eds) Advances in Legume Systematics Part 4. The Fossil Record. Royal Botanic Gardens, RichmondGoogle Scholar
  24. Hably L, Kvaček Z, Manchester SR (2000) Shared taxa of land plants in the Oligocene of Europe and North America in context of Holarctic phytogeography. Acta Univ Carol Geol 59–74Google Scholar
  25. Hollick A (1929) New species of fossil plants from the Tertiary shales near De Beque, Colorado. Bull Torrey Bot Club 56:93–96CrossRefGoogle Scholar
  26. Kim Y-D, Kim S-H, Landrum LR (2004) Taxonomic and phytogeographic implications from ITS phylogeny in Berberis (Berberidaceae). J Plant Res 117:175–182CrossRefPubMedGoogle Scholar
  27. Köhler J (1998) Die Fossillagerstätte Enspel: Vegetation, Vegetationsdynamik und Klimat im Oberoligozän. Dissertation, University of Tübingen (in German) Google Scholar
  28. Kolakovsky A (1964) Pliotsenovaya flora Kodora. Sukhum Bot Sada Monogr 1:1–209 (in Russian) Google Scholar
  29. Köppen W (1936) Das geographische System der Klimate–Handbuch der Klimatologie, vol 1, Part C, Gebr. Borntrager Verl., Berlin (in German) Google Scholar
  30. Kovar-Eder J (2003) Vegetation dynamics in Europe during the Neogene In: Reumer JWF, Wessels W (eds) Distribution and migration of tertiary mammals in eurasia: a volume in honour of Hans de Bruijn, Deinsea, pp 373–392Google Scholar
  31. Kovar-Eder J, Kvaček Z, Martinetto E, Roiron P (2006) Late Miocene to Early Pliocene vegetation of southern Europe (7–4 Ma) as reflected in the megafossil plant record. Palaeogeogr Palaeocl 238:321–339CrossRefGoogle Scholar
  32. Kräusel R (1938) Die tertiäre Flora der Hydrobienkalke von Mainz-Kastel. Palaeontol Z 20:9–103 (in German) CrossRefGoogle Scholar
  33. Kvaček Z, Bůžek Č (1994) A new Miocene Mahonia Nutt. (Berberidaceae) of Europe. Věst Ústř Úst Geol 69:59–62 (in Czech) Google Scholar
  34. Kvaček Z, Teodoridis V, Roiron P (2011) A forgotten Miocene mastixioid flora of Arjuzanx (Landes, SW France). Palaeontogr Abt B 3–111Google Scholar
  35. Lakhanpal RN (1963) The Rujada flora of west central Oregon. University of California Press, DavisGoogle Scholar
  36. Li HM (1987) Leaf structural analysis. In: Mu XN (ed) New technologies and methods in palaeontology. Science Press, Beijing (in Chinese) Google Scholar
  37. LoConte H (1993) Berberidaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants, vol 2. Springer, Berlin, pp 147–152Google Scholar
  38. MacGinitie HD (1953) Fossil plants of the Florissant beds, Colorado. Publications of Carnegie Institution of Washington, Washington D.CGoogle Scholar
  39. Macovei G, Givulescu R (2006) The present stage in the knowledge of the fossil flora at Chiuzbaia Maramureş, Romania. Carpath J Earth Env 1:41–52Google Scholar
  40. Mai D (1995) Tertiäre Vegetationsgeschichte Mitteleuropas. Springer, Heidelberg (in German) Google Scholar
  41. Mai D, Walther H (1988) Die pliozänen Floren von Thüringen, Deutsche Demokratische Republik. Quartärpaläontologie 7:55–297 (in German) Google Scholar
  42. Manchester SR (1999) Biogeographical relationships of North American tertiary floras. Ann Mo Bot Gard 472–522Google Scholar
  43. Manchester SR (2000) Late Eocene fossil plants of the John Day Formation, Wheeler County, Oregon. Oregon Geol 62:51–63Google Scholar
  44. Manchester SR (2001) Update on the megafossil flora of Florissant, Colorado. Proc Denv Mus Nat Sci 4:137Google Scholar
  45. Manchester SR, Chen ZD, Lu AM, Uemura K (2009) Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere. J Syst Evol 47:1–42CrossRefGoogle Scholar
  46. Martinetto E (2001) The role of central Italy as a centre of refuge for thermophilous plants in the late Cenozoic. Acta Palaeobotanica 41:299–319Google Scholar
  47. Martinetto E, Vassio E (2010) Reconstructing “Plant Community Scenarios” by means of palaeocarpological data from the CENOFITA database, with an example from the Ca’Viettone site (Pliocene, Northern Italy). Quat Int 225:25–36CrossRefGoogle Scholar
  48. Martinetto E, Pavia G, Bertoldi R (1997) Fruit and seed floras rich in exotic and subtropical elements from two Lower Pliocene successions of Italy. Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO 58:237–244Google Scholar
  49. McCain JW, Hennen JF (1982) Is the taxonomy of Berberis and Mahonia (Berberidaceae) supported by their rust pathogens Cumminsiella santa sp. nov. and other Cumminsiella species (Uredinales)? Syst Bot 48–59Google Scholar
  50. McGlone MS (2005) Goodbye Gondwana. J Biogeogr 32:739–740CrossRefGoogle Scholar
  51. McKnight TL, Hess D (2000) Climate zones and types: the Köppen system. Physical geography: a landscape appreciation. Prentice Hall, Upper Saddle RiverGoogle Scholar
  52. Meng H-H, Jacques FM, Su T, Huang Y-J, Zhang S-T, Ma H-J, Zhou Z-K (2014) New Biogeographic insight into Bauhinia sl (Leguminosae): integration from fossil records and molecular analyses. BMC Evol Biol 14:181PubMedCentralCrossRefPubMedGoogle Scholar
  53. Meyer HW, Manchester SR (1997) Oligocene Bridge Creek flora of the John Day Formation, Oregon. University of California Press, DavisGoogle Scholar
  54. Mihajlovic D (1996) Two fossil floras from Fruska Gora Mt. and their significance from stratigraphy of terrigenous-lacustrine deposits. Ann Geol Pays Hellen 37:75–81Google Scholar
  55. Milne RI (2006) Northern hemisphere plant disjunctions: a window on tertiary land bridges and climate change? Ann Bot 98:465–472CrossRefGoogle Scholar
  56. Milne RI, Abbott RJ (2002) The origin and evolution of Tertiary relict floras. Adv Bot Res 38:281–314CrossRefGoogle Scholar
  57. Ming Q-Z (2007) A study on the neotectonic division and environment evolution of Qing-Zang plateau and three parallel rivers area. Yunnan Geol 26:387–396 (in Chinese) Google Scholar
  58. Morean R (1982) Berberis claireae, a new species from Baja California; and why not Mahonia. Phytologia 52:221–226CrossRefGoogle Scholar
  59. Myers JA, Kester PR, Retallack GJ (2002) Paleobotanical record of Eocene-Oligocene climate and vegetational change near Eugene, Oregon. Oregon Dep Geol Min Ind Spec Paper 36:145–154Google Scholar
  60. Qian H, Ricklefs RE (2004) Geographical distribution and ecological conservatism of disjunct genera of vascular plants in eastern Asia and eastern North America. J Ecol 92:253–265CrossRefGoogle Scholar
  61. Ramı́rez JL, Cevallos-Ferriz SR (2000) Leaves of Berberidaceae (Berberis and Mahonia) from Oligocene sediments, near Tepexi de Rodrı́guez, Puebla. Rev Palaeobot Palyno 110:247–257CrossRefGoogle Scholar
  62. Renney KM (1972) The Miocene Temblor flora of west central California. Dissertation, University of California, DavisGoogle Scholar
  63. Saporta G (1866) Etudes sur la végétation du Sud-Est de la France à l’époque tertiaire. V. Masson et Fils, Paris (in French) Google Scholar
  64. Shi G-L, Zhou Z-Y, Xie Z-M (2012) A new Oligocene Calocedrus from south China and its implications for transpacific floristic exchanges. Am J Bot 99:108–120CrossRefPubMedGoogle Scholar
  65. Stephyrtza AG (1971) Novie vidi Morus, Berberis i Mahonia iz Miocena Moldavii. Paleontol Zh 2:90–98 (in Russian) Google Scholar
  66. Su T, Jacques F, Ma H-J, Zhou Z-K (2013) Fossil fruits of Ailanthus confucii from the Upper Miocene of Wenshan, Yunnan Province, southwestern China. Palaeoworld 22:153–158CrossRefGoogle Scholar
  67. Takhtajan A (1974) Magnoliophyta Fossilia URSS, vol 1. Nauka, Leningrad (in Russian) Google Scholar
  68. Tanai T, Suzuki N (1963) Miocene floras of southwestern Hokkaido, Japan. In: Chaney RW, Tanai T (eds), Tertiary Floras of Japan. Miocene floras. In: The collaborating association to commemorate the 80th anniversary of the geological survey of Japan, Tokyo, pp 7–149Google Scholar
  69. Tao J-R, Zhou Z-K, Liu Y-S (2000) Evolution of the late Cretaceous-Cenozoic floras in China. Science Press, Beijing (in Chinese) Google Scholar
  70. The Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121CrossRefGoogle Scholar
  71. Wang W-M (1996) Palynological survey of Neogene strata in Xiaolongtan basin, Yunnan Province of south China. Act Bot Sin 38:743–748 (in Chinese) Google Scholar
  72. Wen J (1999) Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annu Rev Ecol Syst 421–455Google Scholar
  73. Wen J, Ickert-Bond S, Nie Z-L, Li R (2010) Timing and modes of evolution of eastern Asian–North American biogeographic disjunctions in seed plants. In: Darwin’s Heritage Today: Proceedings of the Darwin 2010 Beijing International Conference, pp 252–269Google Scholar
  74. Weyland H (1941) Beiträge zur Kenntnis der Rheinischen Tertiärflora: v. Dritte Ergänzungen und Berichtigungen zur Flora der Blätterkohle und des Polierschiefers von Rott im Siebengebirge. Palaeontogr Abt B 86:79–112 (in German) Google Scholar
  75. Whetstone R, Atkinson T, Spaulding D (1997) Berberidaceae. In: Flora of North America editorial committee (ed) Flora of North America, vol. 3. Oxford University Press, New York, pp 272–286Google Scholar
  76. Wu Z-Y (1983) On the significance of Pacific intercontinental discontinuity. Ann Mo Bot Gard:577–590Google Scholar
  77. Wu J-Y (2009) The Pliocene Tuantian flora of Tengehong, Yunnan Province and its Paleoenviromnental analysis. Dissertation, Lanzhou UniversityGoogle Scholar
  78. Wu J-Y, Qin H-N, Xue D-Y, Zhou K-X (2010) Study on seed morphology of Mahonia (Berberidaceae). Guihaia 30:155–160 (in Chinese) Google Scholar
  79. Xia K, Su T, Liu Y-SC, Xing Y-W, Jacques F, Zhou Z-K (2009) Quantitative climate reconstructions of the late Miocene Xiaolongtan megaflora from Yunnan, southwest China. Palaeogeogr Palaeocl 276:80–86CrossRefGoogle Scholar
  80. Xiang Q-Y, Soltis DE, Soltis PS (1998) The eastern Asian and eastern and western North American floristic disjunction: congruent phylogenetic patterns in seven diverse genera. Mol Phylogenet Evol 10:178–190CrossRefPubMedGoogle Scholar
  81. Ying J-S, Boufford DE, Brach AR (2001) Berberidaceae. In: Flora of China Editorial Committee (ed) Flora of China, vol. 19. Science Press, Beijing, pp 714–800Google Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2015

Authors and Affiliations

  • Jian Huang
    • 1
    • 2
  • Tao Su
    • 1
  • Julie Lebereton-Anberrée
    • 1
    • 2
  • Shi-Tao Zhang
    • 4
  • Zhe-Kun Zhou
    • 1
    • 3
  1. 1.Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglunChina
  2. 2.University of the Chinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  4. 4.Kunming University of Science and TechnologyKunmingChina

Personalised recommendations