Journal of Plant Research

, Volume 129, Issue 2, pp 199–207 | Cite as

Utility of the Amborella trichopoda expansin superfamily in elucidating the history of angiosperm expansins

  • Victoria H. Seader
  • Jennifer M. Thornsberry
  • Robert E. CareyEmail author
Regular Paper


Expansins form a superfamily of plant proteins that assist in cell wall loosening during growth and development. The superfamily is divided into four families: EXPA, EXPB, EXLA, and EXLB (Sampedro and Cosgrove in Genome Biol 6:242, 2005. doi: 10.1186/gb-2005-6-12-242). Previous studies on Arabidopsis, rice, and Populus trichocarpa have clarified the evolutionary history of expansins in angiosperms (Sampedro et al. in Plant J 44:409–419, 2005. doi: 10.1111/j.1365-313X.2005.02540.x). Amborella trichopoda is a flowering plant that diverged very early. Thus, it is a sister lineage to all other extant angiosperms (Amborella Genome Project in 342:1241089, 2013. doi: 10.1126/science.1241089). Because of this relationship, comparing the A. trichopoda expansin superfamily with those of other flowering plants may indicate which expansin genes were present in the last common ancestor of all angiosperms. The A. trichopoda expansin superfamily was assembled using BLAST searches with angiosperm expansin queries. The search results were analyzed and annotated to isolate the complete A. trichopoda expansin superfamily. This superfamily is similar to other angiosperm expansin superfamilies, but is somewhat smaller. This is likely because of a lack of genome duplication events (Amborella Genome Project 2013). Phylogenetic and syntenic analyses of A. trichopoda expansins have improved our understanding of the evolutionary history of expansins in angiosperms. Nearly all of the A. trichopoda expansins were placed into an existing Arabidopsis-rice expansin clade. Based on the results of phylogenetic and syntenic analyses, we estimate there were 12–13 EXPA genes, 2 EXPB genes, 1 EXLA gene, and 2 EXLB genes in the last common ancestor of all angiosperms.


Amborella trichopoda Expansin Gene family evolution Plant phylogenetics 



This work was funded by Lebanon Valley College through an Arnold Student-Faculty Research Grant and the Wolf Fund. The sequence data were produced by the Amborella Genome Project in collaboration with the user community.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10265_2015_772_MOESM1_ESM.pdf (2.8 mb)
Clades supported by phylogeny and synteny (Fig. S1, PDF 2848 kb)
10265_2015_772_MOESM2_ESM.pdf (1.1 mb)
Supplementary material 2 (Fig. S2, PDF 1174 kb)
10265_2015_772_MOESM3_ESM.pdf (6.8 mb)
Supplementary material 3 (Fig. S3, PDF 6917 kb)
10265_2015_772_MOESM4_ESM.pdf (3.7 mb)
Supplementary material 4 (Fig. S4, PDF 3813 kb)
10265_2015_772_MOESM5_ESM.pdf (5.6 mb)
Supplementary material 5 (Fig. S5, PDF 5714 kb)
10265_2015_772_MOESM6_ESM.pdf (488 kb)
Supplementary material 6 (Fig. S6, PDF 487 kb)
10265_2015_772_MOESM7_ESM.pdf (377 kb)
Supplementary material 7 (Fig. S7, PDF 377 kb)
10265_2015_772_MOESM8_ESM.pdf (367 kb)
Supplementary material 8 (Fig. S8, PDF 367 kb)
10265_2015_772_MOESM9_ESM.pdf (1.7 mb)
Supplementary material 9 (Fig. S9, PDF 1729 kb)
10265_2015_772_MOESM10_ESM.pdf (358 kb)
Supplementary material 10 (Fig. S10, PDF 357 kb)
10265_2015_772_MOESM11_ESM.pdf (338 kb)
Supplementary material 11 (Fig. S11, PDF 337 kb)
10265_2015_772_MOESM12_ESM.pdf (446 kb)
Supplementary material 12 (Fig. S12, PDF 446 kb)
10265_2015_772_MOESM13_ESM.pdf (159 kb)
Supplementary material 13 (Fig. S13, PDF 159 kb)
10265_2015_772_MOESM14_ESM.pdf (414 kb)
Supplementary material 14 (Fig. S14, PDF 413 kb)
10265_2015_772_MOESM15_ESM.pdf (449 kb)
Supplementary material 15 (Fig. S15, PDF 449 kb)


  1. Amborella Genome Project (2013) The Amborella genome and the evolution of flowering plants. Science 342:1241089. doi: 10.1126/science.1241089 CrossRefGoogle Scholar
  2. Bae JM, Kwak MS, Noh SA, Oh MJ, Kim YS, Shin JS (2014) Overexpression of sweetpotato expansin cDNA (IbEXP1) increases seed yield in Arabidopsis. Transgenic Res 23:657–667. doi: 10.1007/s11248-014-9804-1 CrossRefPubMedGoogle Scholar
  3. Banks JA, Nishiyama T, Hasebe M et al (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332:960–963. doi: 10.1126/science.1203810 PubMedCentralCrossRefPubMedGoogle Scholar
  4. Boron AK, Van Loock B, Suslov D, Markakis MN, Verbelen JP, Vissenberg K (2015) Over-expression of AtEXLA2 alters etiolated arabidopsis hypocotyl growth. Ann Bot 115:67–80. doi: 10.1093/aob/mcu221 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Carey RE, Cosgrove DJ (2007) Portrait of the expansin superfamily in Physcomitrella patens: comparisons with angiosperm expansins. Ann Bot 99:1131–1141. doi: 10.1093/aob/mcm044 PubMedCentralCrossRefPubMedGoogle Scholar
  6. Carey RE, Hepler NK, Cosgrove DJ (2013) Selaginella moellendorffii has a reduced and highly conserved expansin superfamily with genes more closely related to angiosperms than to bryophytes. BMC Plant Biol 13:4. doi: 10.1186/1471-2229-13-4 PubMedCentralCrossRefPubMedGoogle Scholar
  7. Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326. doi: 10.1038/35030000 CrossRefPubMedGoogle Scholar
  8. Cosgrove DJ (2015) Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol 25:162–172. doi: 10.1016/j.pbi.2015.5.014 CrossRefPubMedGoogle Scholar
  9. Dal Santo S, Vannozzi A, Tornielli GB, Fasoli M, Venturini L, Pezzotti M, Zenoni S (2013) Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics. PLoS ONE 8:e62206. doi: 10.1371/journal.pone.0062206 PubMedCentralCrossRefPubMedGoogle Scholar
  10. Gaete-Eastman C, Morales-Quintana L, Herrera R, Moya-Leon MA (2015) In-silico analysis of the structure and binding site features of an α-expansin protein from mountain papaya fruit (VpEXPA2), through molecular modeling, docking, and dynamics simulation studies. J Mol Model 21:115. doi: 10.1007/s00894-015-2656-7 CrossRefPubMedGoogle Scholar
  11. Georgelis N, Nikolaidis N, Cosgrove DJ (2015) Bacterial expansins and related proteins from the world of microbes. Appl Microbiol Biotechnol 99:3807–3823. doi: 10.1007/s00253-015-6534-0 CrossRefPubMedGoogle Scholar
  12. Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314. doi: 10.1126/science.1065889 CrossRefPubMedGoogle Scholar
  13. Jung J, O’Donoghue EM, Dijkwel PP, Brummell DA (2010) Expression of multiple expansin genes is associated with cell expansion in potato organs. Plant Sci 179:77–85. doi: 10.1016/j.plantsci.2010.04.007 CrossRefGoogle Scholar
  14. Krishnamurthy P, Hong JK, Kim JA, Jeong MJ, Lee YH, Lee SI (2015) Genome-wide analysis of the expansin gene superfamily reveals Brassica rapa-specific evolutionary dynamics upon whole genome triplication. Mol Genet Genomics 290:521–530. doi: 10.1007/s00438-014-0935-0 CrossRefPubMedGoogle Scholar
  15. Lyons E, Pedersen B, Kane J, Alam M, Ming R, Tang H, Wang X, Bowers J, Paterson A, Lisch D, Freeling M (2008) Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol 148:1772–1781. doi: 10.1104/pp.108.124867 PubMedCentralCrossRefPubMedGoogle Scholar
  16. McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433PubMedCentralCrossRefPubMedGoogle Scholar
  17. Nikolaidis N, Doran N, Cosgrove DJ (2014) Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion. Mol Biol Evol 31:376–386. doi: 10.1093/molbev/mst206 CrossRefPubMedGoogle Scholar
  18. Palapol Y, Kunyamee S, Thongkhum M, Ketsa S, Ferguson IB, van Doorn WG (2015) Expression of expansin genes in the pulp and the dehiscence zone of ripening durian (Durio zibethinus) fruit. J Plant Physiol 182:33–39. doi: 10.1016/j.jplph.2015.04.005 CrossRefPubMedGoogle Scholar
  19. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi: 10.1093/bioinformatics/btg180 CrossRefPubMedGoogle Scholar
  20. Saito T, Tuan PA, Katsumi-Horigane A, Bai S, Ito A, Sekiyama Y, Ono H, Moriguchi T (2015) Development of flower buds in the Japanese pear (Pyrus pyrifolia) from late autumn to early spring. Tree Physiol 35:653–662. doi: 10.1093/treephys/tpv043 CrossRefPubMedGoogle Scholar
  21. Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6:242. doi: 10.1186/gb-2005-6-12-242 PubMedCentralCrossRefPubMedGoogle Scholar
  22. Sampedro J, Lee Y, Carey RE, dePamphilis C, Cosgrove DJ (2005) Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family. Plant J 44:409–419. doi: 10.1111/j.1365-313X.2005.02540.x CrossRefPubMedGoogle Scholar
  23. Sampedro J, Carey RE, Cosgrove DJ (2006) Genome histories clarify evolution of the expansin superfamily: new insights from the poplar genome and pine ESTs. J Plant Res 119:11–21. doi: 10.1007/s10265-005-0253-z CrossRefPubMedGoogle Scholar
  24. Stover BC, Muller KF (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11:7. doi: 10.1186/1471-2105-11-7 PubMedCentralCrossRefPubMedGoogle Scholar
  25. Tabuchi A, Li LC, Cosgrove DJ (2011) Matrix solubilization and cell wall weakening by β-expansin (group-1 allergen) from maize pollen. Plant J 68:546–559. doi: 10.1111/j.1365-313X.2011.04705.x CrossRefPubMedGoogle Scholar
  26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 PubMedCentralCrossRefPubMedGoogle Scholar
  27. Tovar-Herrera OE, Batista-Garcia RA, Sanchez-Carbente Mdel R, Iracheta-Cardenas MM, Arevalo-Nino K, Folch-Mallol JL (2015) A novel expansin protein from the white-rot fungus Schizophyllum commune. PLoS ONE 10:e0122296. doi: 10.1371/journal.pone.0122296 PubMedCentralCrossRefPubMedGoogle Scholar
  28. Vannerum K, Huysman MJ, De Rycke R, Vuylsteke M, Leliaert F, Pollier J, Lutz-Meindl U, Gillard J, De Veylder L, Goossens A, Inze D, Vyverman W (2011) Transcriptional analysis of cell growth and morphogenesis in the unicellular green alga Micrasterias (Streptophyta), with emphasis on the role of expansin. BMC Plant Biol 11:128. doi: 10.1186/1471-2229-11-128 PubMedCentralCrossRefPubMedGoogle Scholar
  29. Wang T, Park YB, Caporini MA, Rosay M, Zhong L, Cosgrove DJ, Hong M (2013) Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls. Proc Natl Acad Sci USA 110:16444–16449. doi: 10.1073/pnas.1316290110 PubMedCentralCrossRefPubMedGoogle Scholar
  30. Yan A, Wu M, Yan L, Hu R, Ali I, Gan Y (2014) AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis. PLoS ONE 9:e85208. doi: 10.1371/journal.pone.0085208 PubMedCentralCrossRefPubMedGoogle Scholar
  31. Zhang S, Xu R, Gao Z, Chen C, Jiang Z, Shu H (2013) A genome-wide analysis of the expansin genes in Malus × Domestica. Mol Genet Genomics 289:225–236. doi: 10.1007/s00438-013-0796-y CrossRefPubMedGoogle Scholar
  32. Zhou S, Han YY, Chen Y, Kong X, Wang W (2015) The involvement of expansins in response to water stress during leaf development in wheat. J Plant Physiol 183:64–74. doi: 10.1016/j.jplph.2015.05.012 CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2015

Authors and Affiliations

  • Victoria H. Seader
    • 1
  • Jennifer M. Thornsberry
    • 2
  • Robert E. Carey
    • 2
    Email author
  1. 1.Program in Biochemistry and Molecular BiologyLebanon Valley CollegeAnnvilleUSA
  2. 2.Department of BiologyLebanon Valley CollegeAnnvilleUSA

Personalised recommendations