Skip to main content
Log in

Multiple and mass introductions from limited origins: genetic diversity and structure of Solidago altissima in the native and invaded range

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Understanding the origins and diversity of invasive species can reveal introduction and invasion pathways, and inform an effective management of invasive species. Tall goldenrod, Solidago altissima, is a herbaceous perennial plant native to North America and it has become a widespread invasive weed in East Asian countries. We used microsatellite and chloroplast DNA markers to obtain information on neutral processes and on genetic diversity in native and invaded populations of S. altissima and to infer how it invaded and spread in Japan. We found that introduced (n = 12) and native (n = 20) populations had similar levels of genetic diversity at nuclear SSR loci. Genetic structure analysis indicated that at least two independent colonization events gave rise to current S. altissima populations in Japan. The majority (68 %) of the Japanese S. altissima were genetically similar and likely shared a common origin from a single or a small number of populations from the southern USA populations, while the populations in Hokkaido were suggested to arise from a different source. Our results suggest that multiple and mass introductions have contributed to the persistence and rapid adaptation of S. altissima promoting its widespread establishment throughout Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asai Y (1970) On the Solidago canadensis group widely spread by bee-keepers in Japan. J Jpn Bot 45:82–83 (in Japanese)

    Google Scholar 

  • Bandelt H, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Bossdorf O, Auge H, Lafuma L, Rogers W, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11

    Article  PubMed  Google Scholar 

  • Bruvo R, Michiels NK, D’Souza TG, Schulenburg H (2004) A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol Ecol 13:2101–2106

    Article  CAS  PubMed  Google Scholar 

  • Bryant D, Moulton V (2004) Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265

    Article  CAS  PubMed  Google Scholar 

  • Clark LV, Jasieniuk M (2011) POLYSAT: an R package for polyploid microsatellite analysis. Mol Ecol Resour 11:562–566

    Article  PubMed  Google Scholar 

  • Dlugosch K, Parker I (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    Article  CAS  PubMed  Google Scholar 

  • Drummond A, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2011) Geneious, Version 5.4. New Zealand: Biomatters Ltd. Available at: http://www.geneious.com/

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  CAS  PubMed  Google Scholar 

  • Durand E, Jay F, Gaggiotti O, Francois O (2009) Spatial inference of admixture proportions and secondary contact zones. Mol Biol Evol 26:1963–1973

    Article  CAS  PubMed  Google Scholar 

  • Dybdahl M, Drown D (2011) The absence of genotypic diversity in a successful parthenogenetic invader. Biol Invasions 13:1663–1672

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Ellstrand N, Schierenbeck K (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130

    Article  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes−application to human mitochondrial-DNA restriction data. Genetics 131:479–491

    PubMed Central  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard J (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fitzpatrick B, Fordyce J, Niemiller M, Reynolds RG (2012) What can DNA tell us about biological invasions? Biol Invasions 14:245–253

    Article  Google Scholar 

  • Fukuda I (1982) Distributions and population structures of North American plants, Solidago altissima L. and S. gigantea AIT., introduced into the Japanese islands. Sci Rep Tokyo Woman’s Christ Univ 32:675–690 (in Japanese)

    Google Scholar 

  • Garcia-Rossi D, Rank N, Strong D (2003) Potential for self-defeating biological control? Variation in herbivore vulnerability among invasive Spartina genotypes. Ecol Appl 13:1640–1649

    Article  Google Scholar 

  • Gaudeul M, Giraud T, Kiss L, Shykoff J (2011) Nuclear and chloroplast microsatellites show multiple introductions in the worldwide invasion history of common ragweed. Ambrosia artemisiifolia. PLoS ONE 6:e17658

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95 ⁄ 98 ⁄ NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Halverson K, Heard SB, Nason JD, Stireman JO (2008) Origins, distribution, and local co-occurrence of polyploid cytotypes in Solidago altissima (Asteraceae). Am J Bot 95:50–58

    Article  PubMed  Google Scholar 

  • Handley L, Estoup A, Evans D, Thomas CE, Lombaert E, Facon B, Aebi A, Roy HE (2011) Ecological genetics of invasive alien species. Biocontrol 56:409–428

    Article  Google Scholar 

  • Harpending H (1994) Signature of ancient population-growth in a low-resolution mitocondrial-DNA mismatch distribution. Hum Biol 66:591–600

    CAS  PubMed  Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    CAS  PubMed  Google Scholar 

  • Henry P, Le Lay G, Goudet J, Guisan A, Jahodová S, Besnard G (2009) Reduced genetic diversity, increased isolation and multiple introductions of invasive giant hogweed in the western Swiss Alps. Mol Ecol 18:2819–2831

    Article  CAS  PubMed  Google Scholar 

  • Hornoy B, Atlan A, Roussel V, Buckley YM, Tarayre M (2013) Two colonisation stages generate two different patterns of genetic diversity within native and invasive ranges of Ulex europaeus. Heredity 111:355–363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang H, Guo S (2004) Review on ecological studies on three invasive species of European genus Solidago. Guangxi Sci 11:69–74

    Google Scholar 

  • Hubisz M, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed Central  PubMed  Google Scholar 

  • Huson D, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Ito I, Kobayashi K, Yoneyama T (1998) Fate of dehydromatricaria ester added to soil and its implications for the allelopathic effect of Solidago altissima L. Ann Bot-Lond 82:625–630

    Article  CAS  Google Scholar 

  • Jaramillo-Correa JP, Beaulieu J, Khasa DP, Bousquet J (2009) Inferring the past from the present phylogeographic structure of North American forest trees: seeing the forest for the genes. Can J Forest Res 39:286–307

    Article  Google Scholar 

  • Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed Central  PubMed  Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Kelager A, Pedersen J, Bruun H (2013) Multiple introductions and no loss of genetic diversity: invasion history of Japanese rose, Rosa rugosa, in Europe. Biol Invasions 15:1125–1141

    Article  Google Scholar 

  • Keller SR, Taylor DR (2008) History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecol Lett 11:852–866

    Article  PubMed  Google Scholar 

  • Kil JH, Shim KC, Park SH, Koh KS, Suh MH, Ku YB, Suh SU, Oh HK, Kong HY (2004) Distributions of naturalized alien plants in South Korea. Weed Technol 18:1493–1495

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Lambrinos JG (2004) How interactions between ecology and evolution influence contemporary invasion dynamics. Ecology 85:2061–2070

    Article  Google Scholar 

  • Laureto P, Barkman T (2011) Nuclear and chloroplast DNA suggest a complex single origin for the threatened allopolyploid Solidago houghtonii (Asteraceae) involving reticulate evolution and introgression. Syst Bot 36:209–226

    Article  Google Scholar 

  • Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104:3883–3888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee C (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  • Li HL (1978) Compositae. Flora of Taiwan, vol 4. Epoch Publishing Co, Taipei, pp 768–965

    Google Scholar 

  • Lombaert E, Guillemaud T, Cornuet J, Malausa T, Facon B, Estoup A (2010) Bridgehead effect in the worldwide invasion of the biocontrol harlequin ladybird. PLoS ONE 5:e9743

    Article  PubMed Central  PubMed  Google Scholar 

  • Lynch M (1990) The similarity index and DNA fingerprinting. Mol Biol Evol 7:478–484

    CAS  PubMed  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Melville M, Morton J (1982) A biosystematic study of the Solidago canadensis (Compositae) complex. 1. The Ontario populations. Can J Bot 60:976–997

    Article  Google Scholar 

  • Meyer AH, Schmid B (1999) Experimental demography of rhizome populations of establishing clones of Solidago altissima. J Ecol 87:42–54

    Article  Google Scholar 

  • Milligan B (1992) Plant DNA isolation. In: Hoelzel AR (ed) Molecular genetic analysis of populations: a practical approach. IRL Press, Oxford, pp 59–88

    Google Scholar 

  • Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, Maron JL, Morris WF, Parker IM, Power AG, Seabloom EW, Torchin ME, Vázquez DP (2006) Biotic interactions and plant invasions. Ecol Lett 9:726–740

    Article  PubMed  Google Scholar 

  • Moody ME, Mueller LD, Soltis DE (1993) Genetic variation and random drift in autotetraploid populations. Genetics 134:649–657

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nei M (1973) Analysis of Gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular-data 2. Gene frequency data. J Mol Evol 19:153–170

    Article  CAS  PubMed  Google Scholar 

  • Okada M, Ahmad R, Jasieniuk M (2007) Microsatellite variation points to local landscape plantings as sources of invasive pampas grass (Cortaderia selloana) in California. Mol Ecol 16:4956–4971

    Article  CAS  PubMed  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peirson JA, Dick CW, Reznicek AA (2013) Phylogeography and polyploidy evolution of North American goldenrods (Solidago subsect. Humiles, Asteraceae). J Biogeogr 40:1887–1898

    Google Scholar 

  • Petit R, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • R Development Core Team (2013) R 3.0.1. R project for statistical computing. Vienna, Austria. www.r-project.org

  • Roderick G, Navajas M (2003) Genes in new environments: genetics and evolution in biological control. Nat Rev Genet 4:889–899

    Article  CAS  PubMed  Google Scholar 

  • Rogers A, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sakata Y, Ohgushi T, Isagi Y (2013a) Geographic variations in phenotypic traits of the exotic herb Solidago altissima and abundance of recent established exotic herbivorous insects. J Plant Interact 8:216–218

    Article  Google Scholar 

  • Sakata Y, Kaneko S, Hayano A, Inoue-Murayama M, Ohgushi T, Isagi Y (2013b) Isolation and characterization of microsatellite loci in the invasive herb Solidago altissima (Asteraceae). Appl Plant Sci 1:1200313

    Google Scholar 

  • Sakata Y, Yamasaki M, Isagi Y, Ohgushi T (2014) An exotic herbivorous insect drives the evolution of resistance in the exotic perennial herb Solidago altissima. Ecology 95:2569–2578

    Article  Google Scholar 

  • Schlaepfer DR, Edwards PJ, Widmer A, Billeter R (2008) Phylogeography of native ploidy levels and invasive tetraploids of Solidago gigantea. Mol Ecol 17:5245–5256

    Article  PubMed  Google Scholar 

  • Semple JC, Cook RE (2006) Solidago. In: Flora North America Editorial Committee (ed) Flora of North America, vol 20. Oxford University Press, Oxford, pp 107–166

    Google Scholar 

  • Semple JC, Rahman R, Sbovski S, Sorour MK, Kornobis K, Laphitz RL, Tong L (2015) A multivariate morphometric study of the Solidago altissima complex and S. canadensis (Asteraceae: Astereae). Phytoneuron 2014–10:1–31

    Google Scholar 

  • Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166

    Article  CAS  PubMed  Google Scholar 

  • Shaw J, Lickey E, Schilling E, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T (2003) Naturalized plants of Japan. Heibonsha, Tokyo (in Japanese)

    Google Scholar 

  • Soltis D, Morris A, McLachlan J, Manos PS, Soltis PS (2006) Comparative phylogeography of unglaciated eastern North America. Mol Ecol 15:4261–4293

    Article  PubMed  Google Scholar 

  • Takezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144:389–399

    PubMed Central  CAS  PubMed  Google Scholar 

  • te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubešová M, Pyšek P (2012) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot-London 109:19–45

    Article  Google Scholar 

  • Thuiller W, Richardson D, Pysek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250

    Article  Google Scholar 

  • Twyford A, Ennos R (2012) Next-generation hybridization and introgression. Heredity 108:179–189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vallejo-Marin M, Lye G (2013) Hybridisation and genetic diversity in introduced Mimulus (Phrymaceae). Heredity 110:111–122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weber E (1997) Phenotypic variation of the introduced perennial Solidago gigantea in Europe. Nord J Bot 17:631–638

    Article  Google Scholar 

  • Weber E, Jakobs G (2005) Biological flora of central Europe: Solidago gigantea Aiton. Flora 200:109–118

    Article  Google Scholar 

  • Weber E, Schmid B (1998) Latitudinal population differentiation in two species of Solidago (Asteraceae) introduced into Europe. Am J Bot 85:1110–1121

    Article  CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Yu X, He T, Zhao J, Li Q (2014) Invasion genetics of Chromolaena odorata (Asteraceae) extremely low diversity across Asia. Biol Invasions. doi:10.1007/s10530-014-0669-2

    Google Scholar 

  • Yuan Y, Wang B, Zhang S, Tang J, Tu C, Hu S, Yong JWH, Chen X (2013) Enhanced allelopathy and competitive ability of invasive plant Solidago canadensis in its introduced range. J Plant Ecol 6:253–263

    Article  Google Scholar 

Download references

Acknowledgments

We thank H. Choi, M. Ikemoto, K. Shiojiri, A. Uesugi, W. Licht, C. Hafdahl, C. Sacchi, J. Cronin, and K. Dixon for their great help in collecting plant materials. We are indebted to T. Craig for help with site selection for plant sampling and manuscript revision. We are grateful to M. Yamasaki for assistance with figure preparation and S. Sakaguchi for insightful comments on data analysis and manuscript improvement. We thank the two reviewers for invaluable comments and suggestions. This work was partly supported by JSPS Core-to-Core Program (No. 20004) from Japan Society for the Promotion of Science and the National Science Foundation grant (DEB 0949280).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzu Sakata.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 72 kb)

Supplementary material 2 (PDF 876 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakata, Y., Itami, J., Isagi, Y. et al. Multiple and mass introductions from limited origins: genetic diversity and structure of Solidago altissima in the native and invaded range. J Plant Res 128, 909–921 (2015). https://doi.org/10.1007/s10265-015-0753-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-015-0753-4

Keywords

Navigation