Skip to main content

In situ observations of the basal angiosperm Amborella trichopoda reveal a long fruiting cycle overlapping two annual flowering periods

Abstract

Amborella trichopoda is the sole living angiosperm species belonging to the sister lineage of all other extant flowering plants. In the last decade, the species has been the focus of many phylogenetic, genomic and reproductive biology studies, bringing new highlights regarding the evolution of flowering plants. However, little attention has been paid to in situ A. trichopoda populations, particularly to their fruiting cycle. In this study, an A. trichopoda population was observed during three annual flowering cycles. Individuals and branches were labeled in order to monitor the fruiting cycle precisely, from the flowering stage until the abscission of the fruit. Fruit exocarp was green during the first 9 months following flowering, turned red when the next flowering started a year later then remained on the branch during another year, between fruit ripping and abscission. Presence of fruits with two stages of maturity on shrubs was always noticed. Germination tests showed that seeds acquired their germination capacity 1 year after flowering, when fruits changed color. A. trichopoda’s fruiting cycle is a long process overlapping two annual flowering periods. These results introduce a new model for flowering and fruiting cycles. The availability of mature seeds on shrubs for more than 1 year is likely to maximize opportunities to be dispersed, thus promoting the survival of this basal angiosperm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Amborella Genome Project (2013) The Amborella genome and the evolution of flowering plants. Science 342:1241089

    Article  Google Scholar 

  2. Armitage FB, Burley J (1980) Pinus kesiya Royle ex Gordon (syn. P. khasya Royle; P. insularis Endlicher). Tropical forestry, Commonwealth Forestry Institute, Oxford

  3. Bailey IW, Swamy BGI (1948) Amborella trichopoda Baill., a new morphological type of vesselless dicotyledon. J Arnold Arbor 29:245–253

    Google Scholar 

  4. Bailly Y, Bernut L, Brinon H, Brinon M, Fort A, Lauri PE, Omniwack L (1986) Etude de la germination et de la conservation des semences d’essences forestières d’intérêt économique. Rapport final de convention. ORSTOM, Nouméa, p 297

  5. Balouet JC, Olson S (1989) Fossil birds from late Quaternary deposits in New Caledonia. Smithson Contrib Zool, vol 469. Smithsonian Institution Press, Washington DC, pp 1–38

  6. Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego

    Google Scholar 

  7. Bergthorsson U, Richardson AO, Young GJ, Goertzen LR, Palmer JD (2004) Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc Natl Acad Sci USA 101:17747–17752

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  8. Bobrov AVF, Endress PK, Melikian AP, Romanov MS, Sorokin AN, Palmarola Bejerano A (2005) Fruit structure of Amborella trichopoda (Amborellaceae). Bot J Lin Soc 148:265–274

    Article  Google Scholar 

  9. Buzgo M, Soltis PS, Soltis DE (2004) Floral developmental morphology of Amborella trichopoda (Amborellaceae). Int J Plant Sci 165:925–947

    Article  Google Scholar 

  10. Carlquist SJ (1974) Island biology. Columbia University Press, New York

    Book  Google Scholar 

  11. Endress PK (2001) The flowers in extant basal angiosperms and inferences on ancestral flowers. Int J Plant Sci 162:1111–1140

    Article  Google Scholar 

  12. Endress PK (2010) The evolution of floral biology in basal angiosperms. Philos Trans R Soc Lond B Biol Sci 365:411–421

    PubMed Central  Article  PubMed  Google Scholar 

  13. Endress PK, Igersheim A (2000) The reproductive structures of the basal angiosperm Amborella trichopoda (Amborellaceae). Int J Plant Sci 161:S237–S248

    Article  Google Scholar 

  14. Evans J (1982) Plantation forestry in the tropics. Clarendon Press, Oxford

    Google Scholar 

  15. Feild TS, Arens NC (2005) Form, function and environments of the early angiosperms: merging extant phylogeny and ecophysiology with fossils. New Phytol 166:383–408

    Article  PubMed  Google Scholar 

  16. Feild TS, Arens NC (2007) The ecophysiology of early angiosperms. Plant Cell Environ 30:291–309

    CAS  Article  PubMed  Google Scholar 

  17. Feild TS, Zweiniecki MA, Brodribb T, Jaffre T, Donoghue MJ, Holbrook NM (2000) Structure and function of tracheary elements in Amborella trichopoda. Int J Plant Sci 161:705–712

    Article  Google Scholar 

  18. Feild TS, Brodribb T, Jaffre T, Holbrook NM (2001) Acclimation of leaf anatomy, photosynthetic light use, and xylem hydraulics to light in Amborella trichopoda (Amborellaceae). Int J Plant Sci 162:999–1008

    Article  Google Scholar 

  19. Feild TS, Arens NC, Doyle JA, Dawson TE, Donoghue MJ (2004) Dark and disturbed: a new image of early angiopserm ecology. Paleobiology 30:82–107

    Article  Google Scholar 

  20. Floyd SK, Friedman WE (2001) Developmental evolution of endosperm in basal angiosperms: evidence from Amborella (Amborellaceae), Nuphar (Nymphaeaceae), and Illicium (Illiciaceae). Plant Syst Evol 228:153–169

    Article  Google Scholar 

  21. Fogliani B, Klein N, Gâteble G, Scutt CP (2010) Seed biology and germination of the basal angiosperm Amborella trichopoda. In: Pendleton SMR, Schultz B (eds) Seed ecology III. The European Plant Science Organisation, Salt Lake City, Utah, pp 51–52

    Google Scholar 

  22. Forbis TA, Floyd SK, de Queiroz A (2002) The evolution of embryo size in angiosperms and other seed plants: implications for the evolution of seed dormancy. Evolution 56:2112–2125

    Article  PubMed  Google Scholar 

  23. Friedman WE (2001) Comparative embryology of basal angiosperms. Curr Opin Plant Biol 4:14–20

    CAS  Article  PubMed  Google Scholar 

  24. Friedman WE, Bachelier JB (2013) Seed development in Trimenia (Trimeniaceae) and its bearing on the evolution of embryo-nourishing strategies in early flowering plant lineages. Am J Bot 100:906–915

    Article  PubMed  Google Scholar 

  25. Friedman WE, Ryerson KC (2009) Reconstructing the ancestral female gametophyte of angiosperms: insights from Amborella and other ancient lineages of flowering plants. Am J Bot 96:129–143

    Article  PubMed  Google Scholar 

  26. Goremykin VV, Nikiforova SV, Biggs PJ, Zhong B, Delange P, Martin W, Woetzel S, Atherton RA, McLenachan PA, Lockhart PJ (2013) The evolutionary root of flowering plants. Syst Biol 62:50–61

    Article  PubMed  Google Scholar 

  27. Grandcolas P, Nattier R, Trewick S (2014) Relict species: a relict concept? Trends Ecol Evol 29:655–663

    Article  PubMed  Google Scholar 

  28. Howe HF, Smallwood J (1982) Ecology of seed dispersal. Ann Rev Ecol Syst 13:201–228

    Article  Google Scholar 

  29. Jérémie J (1982) Amborellacées. In: Aubréville ALJF (ed) Flore de la Nouvelle Calédonie. Muséum National d’Histoire Naturelle, Paris, pp 157–160

    Google Scholar 

  30. Lupia R, Lidgard S, Crane PR (1999) Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology 25:305–340

    Google Scholar 

  31. Mathews S, Donoghue MJ (1999) The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286:947–950

    CAS  Article  PubMed  Google Scholar 

  32. Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA 104:19363–19368

    PubMed Central  Article  PubMed  Google Scholar 

  33. Morat P, Mac Kee HS (1977) Quelques précisions sur le Trimenia neocaledonica Bak. F. et la famille des Triméniacées en Nouvelle-Calédonie. Adansonia 17:205–2013

    Google Scholar 

  34. Norton SA (1980) Reproductive ecology of Pseudowintera (Winteraceae). M.S. thesis. Victoria University of Wellington, New Zealand

  35. Oginuma K, Jaffre T, Tobe H (2000) The karyotype analysis of somatic chromosomes in Amborella trichopoda (Amborellaceae). J Plant Res 113:281–283

    Article  Google Scholar 

  36. Pascal M, Barré N, Garine-Wichatitsky D, Lorvelec O, Frétey T, Brescia F, Jourdan H (2006) Les peuplements néo-calédoniens de vertébrés : invasions, disparitions. In: IRD (ed) Les espèces envahissantes dans l’archipel néo-calédonien = Invasive species in the New Caledonian archipelago (Expertise Collégiale), Paris, p 259

  37. Pelletier B (2006) Geology of the New Caledonia region and its implication for the study of the New Caledonian biodiversity. In: Pairy C. RdFB (ed) Forum Biodiversité des écosystèmes corallines, Nouméa, pp 17–30

  38. Pillon Y (2009) Récolte d’échantillons d’Amborella trichopoda. Institut de Recherche pour le Développement, pp 1–12

  39. Pillon Y (2012) Time and tempo of diversification in the flora of New Caledonia. Bot J Lin Soc 170:288–298

    Article  Google Scholar 

  40. Poncet V, Munoz F, Munzinger J, Pillon Y, Gomez C, Couderc M, Tranchant-Dubreuil C, Hamon S, de Kochko A (2013) Phylogeography and niche modelling of the relict plant Amborella trichopoda (Amborellaceae) reveal multiple Pleistocene refugia in New Caledonia. Mol Ecol 22:6163–6178

    Article  PubMed  Google Scholar 

  41. Qiu YL, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402:404–407

    CAS  Article  PubMed  Google Scholar 

  42. Rice DW, Alverson AJ, Richardson AO, Young GJ, Sanchez-Puerta MV, Munzinger J, Barry K, Boore JL, Zhang Y, dePamphilis CW, Knox EB, Palmer JD (2013) Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science 342:1468–1473

    CAS  Article  PubMed  Google Scholar 

  43. Robbins AMJ (1983) Pinus oocarpa Schiede (mimeo). Seed leaflet No 3. DANIDA Forest Seed Centre, Denmark

  44. Romanov MS, Dilcher DL (2013) Fruit structure in Magnoliaceae s.l. and Archaeanthus and their relationships. Am J Bot 100:1494–1508

    Article  PubMed  Google Scholar 

  45. Schlessman MA, Vary LB, Munzinger J, Lowry PP (2014) Incidence, correlates, and origins of dioecy in the island flora of New Caledonia. Int J Plant Sci 175:271–286

    Article  Google Scholar 

  46. Singh H (1978) Embryology of gymnosperms. Gebruder Borntraeger, Berlin

    Google Scholar 

  47. Soltis PS, Soltis DE, Chase MW (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402–404

    CAS  Article  PubMed  Google Scholar 

  48. Soltis DE, Albert VA, Leebens-Mack J, Palmer JD, Wing RA, dePamphilis CW, Ma H, Carlson JE, Altman N, Kim S, Wall PK, Zuccolo A, Soltis PS (2008) The Amborella genome: an evolutionary reference for plant biology. Genome Biol 9:402

    PubMed Central  Article  PubMed  Google Scholar 

  49. Soltis PS, Brockington SF, Yoo MJ, Piedrahita A, Latvis M, Moore MJ, Chanderbali AS, Soltis DE (2009) Floral variation and floral genetics in basal angiosperms. Am J Bot 96:110–128

    Article  PubMed  Google Scholar 

  50. Thien LB, White DA, Larry YY (1983) The reproductive biology of a relict-Illicium floridanum Ellis. Am J Bot 70:719–727

    Article  Google Scholar 

  51. Thien LB, Sage T, Jaffre T, Bernhardt P, Pontieri V, Weston PH, Malloch D, Azuma H, Graham SW, McPherson MA, Rai HS, Sage RF, Dupre JL (2003) The population structure and floral biology of Amborella trichopoda (Amborellaceae). Ann Missouri Bot Gard 90:466–490

    Article  Google Scholar 

  52. Tobe H, Jaffre T, Raven PH (2000) Embryology of Amborella (Amborellaceae): descriptions and polarity of character states. J Plant Res 113:271–280

    Article  Google Scholar 

  53. van Schaik CP, Terborgh JW, Wright SJ (1983) The phenology of tropical forests: adaptive significance and consequences for primary consumers. Ann Rev Ecol Syst 24:353–377

    Article  Google Scholar 

  54. von Balthazar M, Endress PK (1999) Floral bract function, flowering process and breeding systems of Sarcandra and Chloranthus (Chloranthaceae). Plant Syst Evol 218:161–178

    Article  Google Scholar 

  55. Walters GA (1974) Araucaria (Juss.) Araucaria. Seeds of woody plants in the United States, vol 450. Forest Service, USDA, Washington DC

  56. Whitmore TC (1977) A first look at Agathis. Tropical forestry. Commonwealth Forestry Institute, Oxford

    Google Scholar 

  57. Williams JH (2009) Amborella trichopoda (Amborellaceae) and the evolutionary developmental origins of the angiosperm progamic phase. Am J Bot 96:144–165

    Article  PubMed  Google Scholar 

  58. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    CAS  Article  PubMed  Google Scholar 

  59. Zuccolo A, Bowers JE, Estill JC, Xiong Z, Luo M, Sebastian A, Goicoechea JL, Collura K, Yu Y, Jiao Y, Duarte J, Tang H, Ayyampalayam S, Rounsley S, Kudrna D, Paterson AH, Pires JC, Chanderbali A, Soltis DE, Chamala S, Barbazuk B, Soltis PS, Albert VA, Ma H, Mandoli D, Banks J, Carlson JE, Tomkins J, dePamphilis CW, Wing RA, Leebens-Mack J (2011) A physical map for the Amborella trichopoda genome sheds light on the evolution of angiosperm genome structure. Genome Biol 12:R48

    PubMed Central  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Josianne Patissou (IRD) for technical help on the field and Gildas Gâtéblé from Institut Agronomique néo-Calédonien (IAC) for hosting germination tests in the IAC greenhouses.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Philippe Marmey.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fourcade, F., Pouteau, R., Jaffré, T. et al. In situ observations of the basal angiosperm Amborella trichopoda reveal a long fruiting cycle overlapping two annual flowering periods. J Plant Res 128, 821–828 (2015). https://doi.org/10.1007/s10265-015-0744-5

Download citation

Keywords

  • Angiosperm evolution
  • Dispersal
  • Fruit development
  • New Caledonia
  • Phenological monitoring