Journal of Plant Research

, Volume 128, Issue 5, pp 747–761 | Cite as

First occurrence of Cedrelospermum (Ulmaceae) in Asia and its biogeographic implications

  • Lin-Bo Jia
  • Steven R. Manchester
  • Tao Su
  • Yao-Wu Xing
  • Wen-Yun Chen
  • Yong-Jiang Huang
  • Zhe-Kun Zhou
Regular Paper


Cedrelospermum (Ulmaceae) is an extinct genus with extensive fossil records in Europe and North America. However, no fossil of the genus has been reported from Asia. Here we describe Cedrelospermum asiaticum L.B. Jia, Y.J. Huang et Z.K. Zhou sp. nov. based on compressed fruits from the late Miocene of Yunnan, southwestern China. The fossil fruits are characterized by an ovate fruit body adjoined by double wings, with the veins on the primary wing converging toward a stigmatic area. According to the historical geographic distribution of the genus, we hypothesize that Cedrelospermum originated in North America where both single-winged and double-winged fruits were reported. The single-winged form subsequently spread into Europe via the North Atlantic land bridge and the double-winged form dispersed into Asia via the Bering land bridge. From the Eocene to Oligocene, a southward retreat of the genus distribution probably took place, which coincided with the global surface cooling initiated during the Eocene–Oligocene transition. The extinction of Cedrelospermum from Asia may be related to the intensification of the East Asian monsoon.


Asia Biogeography Cedrelospermum Miocene Monsoon Ulmaceae 



The authors thank Dr. Hongshan Wang for compiling the North American fossil records; Dr. Shitao Zhang for study on geological horizon; Dr. Frédéric M.B. Jacques for improving the figures; Dr. Jianwei Zhang, Shufeng Li, He Xu and Honghu Meng for technical assistance with software; Julie Lebreton-Anberrée for giving comments on the geological setting and polishing the manuscript; Dr. Sergio R.S. Cevallos-Ferriz for providing the isotope dating age for the flora of the Pié de Vaca Formation, Puebla, Mexico; Dr. Arata Momohara and Dr. Sergei Vikulin for providing references; members of the Paleoecology Research Group in Kunming institute of Botany, CAS for help with field work; the two anonymous reviewers for improving the manuscript. This work was supported by the National Natural Science Foundation of China (No. 41372035) and the National Key Basic Research Project (“973” Project, No. 2012CB821900). This work is a contribution to NECLIME (Neogene Climate Evolution in Eurasia).


  1. An Z-S, John EK, Warren LP, Stephen CP (2001) Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 411:62–66CrossRefGoogle Scholar
  2. Andrèanszky G, Mészáros M (1959) Pflanzenreste aus dem mittleren Eozän des Siebenbürgischen Beckens. Földt Közl 89:302–307Google Scholar
  3. Becker HF (1969) Fossil plants of the Tertiary Beaverhead Basins in southwestern Montana. Palaeontogr Abt B Palaeophytol 127:1–142Google Scholar
  4. Bestland EA, Retallack GJ (1994) Geology of the Painted Hills Unit, John Day Fossil Beds, National Monument. In: National Parks Service Report on Contract CX-9000-1-10009, Oregon, USA, pp 260Google Scholar
  5. Bestland EA, Hammond RE, Blackwell DLS, Kays MA, Retallack GJ, Stimac J (1999) Geologic framework of the Clarno Unit, John Day Fossil Beds National Monument, central Oregon. Or Geol 61:3–19Google Scholar
  6. Bureau of Geology and Mineral Resources of Yunnan Province (1996) Stratigraphy (Lithostratigraphy) of Yunnan Province. China University of Geosciences Press, Wuhan, Hubei, China (in Chinese with English introduction) Google Scholar
  7. Bůžek Č, Holý F, Kvaček Z (1996) Early Miocene flora of the Cypris Shale (western Bohemia). Acta Mus Nation Pragae, Ser B, Hist natur 52:1–72Google Scholar
  8. Collinson ME, Manchester SR, Wilde V (2012) Fossil fruits and seeds of the Middle Eocene Messel biota, Germany. Abh Senckenb Naturforsch Ges 570:1–251Google Scholar
  9. Daghlian CP, Crepet WL, Delevoryas T (1980) Investigations of Tertiary angiosperms: a new flora including Eomimosoidea plumosa from the Oligocene of eastern Texas. Am J Bot 67(3):309–320CrossRefGoogle Scholar
  10. Davies R, Cartwright J, Pike L, Line C (2001) Early Oligocene initiation of North Atlantic Deep Water formation. Nature 410:917–920CrossRefPubMedGoogle Scholar
  11. Denk T, Grimm GW (2005) Phylogeny and biogeography of Zelkova (Ulmaceae sensu stricto) as inferred from leaf morphology, ITS sequence data and the fossil record. Bot J Linn Soc 147:129–157CrossRefGoogle Scholar
  12. Denk T, Grímsson F, Zetter R (2010) Episodic migration of oaks to Island: evidence for a North Atlantic “land bridge” in the latest Miocene. Am J Bot 97(2):276–287CrossRefPubMedGoogle Scholar
  13. Denk T, Grímsson F, Zetter R, Símonarson AL (2011) The biogeographic history of Iceland-the North Atlantic land bridge revisited. In: Landman NH, Harries PJ (eds) Topics in Geobiology. Springer, Netherlands. doi: 10.1007/978-94-007-0372-8_12 Google Scholar
  14. Dong W (2001) Upper Cenozoic stratigraphy and paleoenvironment of Xiaolongtan basin, Kaiyuan, Yunnan. In: Deng T, Wang Y (eds) Proceedings of the eighth annual meeting of the chinese society of vertebrate paleontology. China Ocean Press, Beijing, pp 91–100 (in Chinese with English abstract) Google Scholar
  15. Ettingshausen C (1853) Die tertiäre Flora von Häring in Tirol. Abh Geol Reichsanst 2(2):1–118Google Scholar
  16. Ettingshausen C (1890) Die fossile Flora von Schoenegg bei Wies in Steiermark. Denkschr Akad Wiss math Kl 57:61–112Google Scholar
  17. Fan M, Heller P, Allen SD, Hough BG (2014) Middle Cenozoic uplift and concomitant drying in the central Rocky Mountains and adjacent Great Plains. Geology 42:547–550CrossRefGoogle Scholar
  18. Graham A (1993) History of the vegetation: Cretaceous (Maastrichtian)-Tertiary. In: Flora of North America editorial Committee (ed) Flora of North America. Oxford University Press, New York, pp 57–70Google Scholar
  19. Graham A (1999) Late Cretaceous and Cenozoic history of North American vegetation, north of Mexico. Oxford University Press, New YorkGoogle Scholar
  20. Grande L (2013) The lost world of Fossil Lake. University of Chicago Press, Chicago/LondonCrossRefGoogle Scholar
  21. Hably L, Thiébaut M (2002) Revision of Cedrelospermum (Ulmaceae) fruits and leaves from the Tertiary of Hungary and France. Palaeontogr Abt B 262:71–90Google Scholar
  22. Hably L, Kvaček Z, Manchester SR (2000) Shared taxa of land plants in the Oligocene of Europe and North America in context of Holarctic phytogeography. Acta Univ Carol Geol 44:59–74Google Scholar
  23. Ickert-Bond SM, Murray DF, DeChaine E (2009) Contrasting patterns of plant distribution in Beringia. Alsk Park Sci 8:26–32Google Scholar
  24. Jacques FMB, Su T, Spicer RA, Xing Y-W, Huang Y-J, Zhou Z-K (2014) Late Miocene southwestern Chinese floristic diversity shaped by the southeastern uplift of the Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol 411:208–215CrossRefGoogle Scholar
  25. Knobloch E (1969) Tertiäre floren von Mähren. Published conjointly by Moravian Museum and Musejni Spolek, Brno, Czech RepublicGoogle Scholar
  26. Kovar-Eder J, Kvaček Z, Ströbitzer-Hermann M (2004) The Miocene flora of Parschlug (Styria, Austria)-revision and synthesis. Ann Naturhist Mus Wien 105A:45–159Google Scholar
  27. Kvaček Z (1995) Limnobiophyllum Krassilov—a fossil link between the Araceae and the Lemnaceae. Aquat Bot 50:49–61CrossRefGoogle Scholar
  28. Kvaček Z (2011) The late Miocene flora of Kučílin near Bílina in North Bohemia revisited. Acta Musel Nationalis Pragae 67:83–144Google Scholar
  29. Lebreton-Anberrée J, Manchester SR, Huang J, Li SF, Wang YQ, Zhou ZK (2015) First fossil fruits and leaves of Burretiodendron s.l. (Malvaceae s.l.) in south-east Asia: implications for taxonomy, paleoclimate and biogeography. Int J Plant Sci (in press)Google Scholar
  30. MacGinitie HD (1953) Fossil plants of the Florissant beds, Colorado. Carnegie Institution of Washington Publication, WashingtonGoogle Scholar
  31. MacGinitie HD (1969) The Eocene Green River flora of northwestern Colorado and northeastern Utah. University of California Press, CaliforniaGoogle Scholar
  32. MacGinitie HD (1974) An early Middle Eocene flora from the Yellowstone-Absaroka volcanic province, Northwestern Wind River Basin, Wyoming. University of California Press, CaliforniaGoogle Scholar
  33. Magallón-Puebla S, Cevallos-Ferriz SRS (1994) Latest occurrence of the extinct genus Cedrelospermum (Ulmaceae) in North America: Cedrelospermum manchesteri from Mexico. Rev Palaeobot Palyno 81:115–128CrossRefGoogle Scholar
  34. Manchester SR (1987) Extinct ulmaceous fruits from the Tertiary of Europe and western North America. Rev Palaeobot Palyno 52:119–129CrossRefGoogle Scholar
  35. Manchester SR (1989) Attached reproductive and vegetative remains of the extinct American-European genus Cedrelospermum (Ulmaceae) from the early Tertiary of Utah and Colorado. Am J bot 256–276Google Scholar
  36. Manchester SR (1994) Fruits and seeds of the Middle Eocene Nut Beds flora, Clarno Formation, Oregon. Palaeontogr Am 58:1–205Google Scholar
  37. Manchester SR, Tiffney BH (2001) Integration of paleobotanical and neobotanical data in the assessment of phytogeographic history of holarctic angiosperm clades. Int J Plant Sci 162:S19–S27CrossRefGoogle Scholar
  38. Manchester SR, Zavada MS (1987) Lygodium foliage with intact sorophores from the Eocene of Wyoming. Bot Gaz 148(3):392–399CrossRefGoogle Scholar
  39. Marincovich L, Gladenkov AY (1999) Evidence for an early opening of the Bering Strait. Nature 397:149–151CrossRefGoogle Scholar
  40. Marincovich L, Gladenkov AY (2001) New evidence for the age of Bering Strait. Quat Sci Rev 20:329–335CrossRefGoogle Scholar
  41. Marincovich L, Brouwers EM, Hopkins DM, McKenna MC (1990) Late Mesozoic and Cenozoic paleogeographic and paleoclimatic history of the Arctic Ocean Basin, based on shallow marine faunas and terrestrial vertebrates. In: Grantz A, Johnson L, Sweeney JF (eds) The geology of North America L-The Arctic Ocean region. Geological Society of America, Colorado, pp 403–426Google Scholar
  42. Meng H-H, Jacques FMB, Su T, Huang Y-J, Zhang S-T, Ma H-J, Zhou Z-K (2014) New biogeographic insight into Bauhinia sl (Leguminosae): integration from fossil records and molecular analyses. BMC Evol Biol 14:181PubMedCentralCrossRefPubMedGoogle Scholar
  43. Meyer HW, Manchester SR (1997) Oligocene Bridge Creek flora of the John Day Formation, Oregon. University of California Press, CaliforniaGoogle Scholar
  44. Mix HT, Mulch A, Kent-Corson ML, Chamberlain CP (2011) Cenozoic migration of topography in the North American Cordillera. Geology 39:87–90CrossRefGoogle Scholar
  45. Paraschiv V (2008) New Sarmatian plant macroremains from Oltenia region (Romania). Acta Palaeontologica Romaniae 6:279–286Google Scholar
  46. Poore RH (2008) Neogene Epeirogeny and the Iceland Plume. Dissertation, University of CambridgeGoogle Scholar
  47. Ramsay ATS, Smart CW, Zachos JC (1998) A model of early to middle Miocene Deep Ocean circulation for the Atlantic and Indian Oceans. Geol Soc Lond Spec Publ 131:55–70CrossRefGoogle Scholar
  48. Retallack GJ, Orr WN, Prothero DR, Duncan RA, Kester PR, Ambers CP (2004) Eocene–Oligocene extinction and paleoclimatic change near Eugene, Oregon. Geol Soc Am Bull 116:817–839CrossRefGoogle Scholar
  49. Rüffle L (1963) Die Obermiozäne Flora vom Randecker Maar. Paläontologische Abh 1:139–298Google Scholar
  50. Saporta G (1889) Dernières adjonctions à la flore fossile d’Aix-en-Provence. Ann sci nat Bot 10:1–192Google Scholar
  51. Su T, Jacques FMB, Spicer RA, Liu Y-S, Huang Y-J, Xing Y-W, Zhou Z-K (2013a) Post-Pliocene establishment of the present monsoonal climate in SW China: evidence from the late Pliocene Longmen megaflora. Clim Past 9:1675–1701CrossRefGoogle Scholar
  52. Su T, Liu Y-S, Jacques FMB, Huang Y-J, Xing Y-W, Zhou Z-K (2013b) The intensification of the East Asian winter monsoon contributed to the disappearance of Cedrus (Pinaceae) in southwestern China. Quat Res 80:316–325CrossRefGoogle Scholar
  53. Tang H, Eronen J, Kaakinen A, Utescher T, Ahrens B, Fortelius M (2015) Strong winter monsoon wind causes surface cooling over India and China in the Late Miocene. Clim Past 11:63–93CrossRefGoogle Scholar
  54. Tiffney BH (1985) The Eocene North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the Northern Hemisphere. J Arnold Arboretum 66:243–273Google Scholar
  55. Tiffney BH (2000) Geographic and climatic influences on the Cretaceous and Tertiary history of Euramerican floristic similarity. Acta Univ Carol Geol 44:5–16Google Scholar
  56. Tiffney BH (2008) Phylogeography, fossils, and Northern Hemisphere biogeography: the role of physiological Uniformitarianism. Ann Missouri Bot Gard 95(1):135–143CrossRefGoogle Scholar
  57. Tiffney BH, Manchester SR (2001) The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere Tertiary. Int J Plant Sci 162:S3–S17CrossRefGoogle Scholar
  58. Unger F (1861) Sylloge plantarum fossilium I. Denkschr Akad Wiss Wien Math-Nat 19:1–48Google Scholar
  59. Unger F (1867) Die fossile flora von Kumi auf der Insel Euboea. Denkschr Akad Wiss Math-Nat Kl 27:27–90Google Scholar
  60. Wang W-M (1996) A palynological survey of Neogene strata in Xiaolongtan basin, Yunnan Province of South China. Acta Bot Sin 38:743–748Google Scholar
  61. Weyland H (1938) Beiträge zur Kenntnis der rheinischen Tertiärflora. III. Zweite Ergänzungen und Berichtigungen zur Flora der Blätterkohle und des Polierschiefers von Rott im Siebengebirge. Palaeontogr Abt B 83:123–171Google Scholar
  62. Wilde V, Manchester SR (2003) Cedrelospermum-fruits (Ulmaceae) and related leaves from the Middle Eocene of Messel (Hesse, Germany). Cour Forschungsinst Senckenb 241:147–153Google Scholar
  63. Wilf P (2000) Late Paleocene–early Eocene climate changes in southwestern Wyoming: paleobotanical analysis. Geol Soc Am Bull 112:292–307CrossRefGoogle Scholar
  64. Xia K, Su T, Liu Y-S, Xing Y-W, Jacques FMB, Zhou Z-K (2009) Quantitative climate reconstructions of the late Miocene Xiaolongtan megaflora from Yunnan, southwest China. Palaeogeogr Palaeoclimatol Palaeoecol 276:80–86CrossRefGoogle Scholar
  65. Xiang QY, Soltis DE (2001) Dispersal-vicariance analyses of intercontinental disjuncts: historical biogeographical implications for angiosperms in the Northern Hemisphere. Int J Plant Sci 162:S29–S39CrossRefGoogle Scholar
  66. Xing Y-W, Hu J-J, Jacques FMB, Wang L, Su T, Huang Y-J, Liu Y-S, Zhou Z-K (2013) A new Quercus species from the upper Miocene of southwestern China and its ecological significance. Rev Palaeobot Palynol 193:99–109CrossRefGoogle Scholar
  67. Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283CrossRefPubMedGoogle Scholar
  68. Zhang C-H (1976) The report to the regional geological survey (1/200,000) of Wenshan/Maguan Scope (F-48-3, F-48-9). Geological Bureau of Yunnan Province, YunnanGoogle Scholar
  69. Zhang J-W, D’Ashalata R, Adams JM, Li Y, Liang X-Q, Jacques FMB, Su T, Zhou Z-K (2015) Sequoia maguanensis, a new Miocene relative of the coast redwood, Sequoia sempervirens, from China: implications for paleogeography and paleoclimate. Am J Bot 102(1):1–16CrossRefGoogle Scholar
  70. Zheng J-J, Liu S-W, Huang X-S, Chen G-F, Qiu Z-D (1999) Chinese Stratigraphical Thesaurus. Geological Publishing House, BeijingGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2015

Authors and Affiliations

  • Lin-Bo Jia
    • 1
    • 5
  • Steven R. Manchester
    • 3
  • Tao Su
    • 2
  • Yao-Wu Xing
    • 4
  • Wen-Yun Chen
    • 1
  • Yong-Jiang Huang
    • 1
  • Zhe-Kun Zhou
    • 1
    • 2
  1. 1.Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  2. 2.Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
  3. 3.Florida Museum of Natural HistoryUniversity of FloridaGainesvilleUSA
  4. 4.Botany DepartmentField Museum of Natural HistoryChicagoUSA
  5. 5.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations