Journal of Plant Research

, Volume 128, Issue 4, pp 653–663 | Cite as

Reciprocal translocation identified in Vigna angularis dominates the wild population in East Japan

  • Lixia Wang
  • Shinji Kikuchi
  • Chiaki Muto
  • Ken NaitoEmail author
  • Takehisa Isemura
  • Masao Ishimoto
  • Xuzhen Cheng
  • Akito Kaga
  • Norihiko Tomooka
Regular Paper


Using an F2 population derived from cultivated and wild azuki bean, we previously detected a reciprocal translocation and a seed size QTL near the translocation site. To test the hypothesis that the translocation in the cultivated variety contributed to the larger seed size, we performed further linkage analyses with several cross combinations between cultivated and wild azuki beans. In addition, we visually confirmed the translocation by cytogenetic approach using 25 wild and cultivated accessions. As a result, we found the translocation-type chromosomes in none of the cultivated accessions, but in a number of the wild accessions. Interestingly, all the wild accessions with the translocation were originally collected from East Japan, while all the accessions with normal chromosomes were from West Japan or the Sea of Japan-side region. Such biased geographical distribution could be explained by the glacial refugium hypothesis, and supported narrowing down the domestication origin of cultivated azuki bean.


Azuki bean Linkage analysis Cytogenetics Reciprocal translocation Wild population 



We are very grateful to Dr. Takaya Iwasaki for his academic adivice about glacial refugium hypothesis. We are also grateful to Hokkaido Prefectural Central Agricultural Experiment Station for supplying seeds of a cultivar ‘Shumari’. This research was partially conducted while the first author was a visiting scholar in NIAS.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10265_2015_720_MOESM1_ESM.xlsx (66 kb)
Supplementary material 1 (XLSX 65 kb)


  1. Chaiteng B, Kaga A, Tomooka N, Isemura T, Kuroda Y, Vaughan DA (2006) Development of a black gram [Vinga mungo (L.) Hepper] linkage map and its comparison with an azuki bean [Vigna angularis (Willd.) Ohwi and Ohashi] linkage map. Theor Appl Genet 113:1261–1269CrossRefGoogle Scholar
  2. Han OK, Kaga A, Isemura T, Wang XW, Tomooka N, Vaughan DA (2005) A genetic linkage map of azuki bean [Vigna angularis (Willd.) Ohwi and Ohashi]. Theor Appl Genet 111:1278–1287PubMedCrossRefGoogle Scholar
  3. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276CrossRefGoogle Scholar
  4. Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913PubMedCrossRefGoogle Scholar
  5. Honjo M, Ueno S, Tsumura Y, Washitani I, Ohsawa R (2004) Phylogeographic study based on intraspecific sequence variation of chloroplast DNA for the conservation of genetic diversity in the Japanese endangered species Primula sieboldii. Biol Conserv 120:211–220CrossRefGoogle Scholar
  6. Isemura T, Kaga A, Tomooka N, Shimizu T, Vaughan DA (2010) The genetics of domestication of rice bean, Vigna umbellata. Ann Bot 106:927–944PubMedCentralPubMedCrossRefGoogle Scholar
  7. Isemura T, Kaga A, Tabata S, Somta P, Srivines P, Shimizu T, Jo U, Vaughan DA, Tomooka N (2012) Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS One 7:e41304PubMedCentralPubMedCrossRefGoogle Scholar
  8. Iwasaki T, Aoki K, Seo A, Murakami N (2012) Comparative phylogeography of four component species of deciduous broad-leaved forests in Japan based on chloroplast DNA variation. J Plant Res 125:207–221PubMedCrossRefGoogle Scholar
  9. Iwata H, Ninomiya S (2006) AntMap: constructing genetic linkage map using an ant colony optimization algorithm. Breed Sci 56:371–377CrossRefGoogle Scholar
  10. Kaga A, Isemura T, Tomooka N, Vaughan DA (2008) The genetics of domestication of the azuki bean (Vigna angularis). Genetics 178:1013–1036PubMedCentralPubMedCrossRefGoogle Scholar
  11. Kim CG, Fujimiya A, Saitou N (2003) Construction of a gorilla fosmid library and its PCR screening system. Genomics 82:571–574PubMedCrossRefGoogle Scholar
  12. Liu CJ, Witcombe JR, Pittaway TS, Nash M, Hash CT, Busso CS, Gale MD (1994) An RFLP-based genetic map of pearl millet Pennisetum glaucum. Theor Appl Genet 89:481–487PubMedGoogle Scholar
  13. Livingstone KD, Churchill G, Jahn MK (2000) Linkage mapping in populations with karyotype rearrangements. J Hered 91:423–428PubMedCrossRefGoogle Scholar
  14. Qi X-S, Chen C, Comes HP, Sakaguchi S, Liu Y-H, Tanaka N, Sakio H, Qiu Y-X (2012) Molecular data and ecological niche modelling reveal a highly dynamic evolutionary history of the East Asian Tertiary relict Cercidiphyllum (Cercidiphyllaceae). New Phytol 196:617–630PubMedCrossRefGoogle Scholar
  15. Scriven PN, Handyside AH, Ogilvie CM (1998) Chromosome translocations: segregation modes and strategies for preimplantation genetic diagnosis. Prenat Diagn 18:1437–1449PubMedCrossRefGoogle Scholar
  16. Somta P, Kaga A, Tomooka N, Kashiwaba K, Isemura T, Chaitieng B, Srivines P, Vaughan DA (2006) Development of an interspecific Vigna linkage map between V. umbellata (Thunb.) Ohwi and Ohashi and V. nakashimae (Ohwi) Ohwi and Ohashi and its use in analysis of bruchid resistance and comparative genomics. Plant Breed 125:77–84CrossRefGoogle Scholar
  17. Takeya M, Yamasaki F, Uzuhashi S, Aoki T, Sawada H, Nagai T, Tomioka K, Tomooka N, Sato T, Kawase M (2011) NIASGBdb: NIAS Genebank databases for genetic resources and plant disease information. Nucleic Acids Res 39:1108–1113CrossRefGoogle Scholar
  18. Tateishi Y, Maxted N (2002) New species and cobinations in Vigna subgenus Ceratotropis (Piper) Verdcourt (Leguminosae, Phaseoleae). Kew Bull 57:625–633CrossRefGoogle Scholar
  19. Tomooka N, Kaga A, Vaughan DA (2005) The Asian Vigna (Vigna subgenus Ceratotropis): Biodiversity and evolution. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, vol 1c., PhanerogamsScience, Enfield, pp 87–147Google Scholar
  20. Vaughan DA, Tomooka N, Kaga A (2005) Azuki bean [Vigna angularis (L.) Ohwi and Ohashi]. In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering, and crop improvement, vol 1., Grain legumesCRC Press, Boca Roca, pp 341–353Google Scholar
  21. Wang XW, Kaga A, Tomooka N, Vaughan DA (2004) The development of SSR markers by a new method in plants and their application to gene flow studies in azuki bean [Vigna angularis (Willd.) Ohwi and Ohashi]. Theor Appl Genet 109:352–360PubMedGoogle Scholar
  22. Wang S, Kakui H, Kikuchi S, Koba T, Sassa H (2012) Interhaplotypic heterogeneity and heterochromatic features may contribute to recombination suppression at the S locus in apple (Malus × domestica). J Exp Bot 63:4983–4990PubMedCentralPubMedCrossRefGoogle Scholar
  23. Wiman KG, Clarkson B, Hayday AC, Saito H, Tonegawa S, Hayward WS (1984) Activation of a translocated c-myc gene: role of structural alterations in the upstream region. Proc Natl Acad Sci USA 81:6798–69802PubMedCentralPubMedCrossRefGoogle Scholar
  24. Xu HX, Jing T, Tomooka N, Kaga A, Isemura T, Vaughan DA (2008) Genetic diverisity of the azuki bean (Vigna angularis (Willd.) Ohwi and Ohashi) gene pool as assessed by SSR markers. Genome 51:728–738PubMedCrossRefGoogle Scholar
  25. Yamaguchi H (1992) Wild and weed azuki beans in Japan. Econ Bot 46:384–394CrossRefGoogle Scholar
  26. Yamamoto Y, Sano CM, Tatsumi Y, Sano H (2006) Field analysis of horizontal gene flow among Vigna angularis complex plants. Plant Breed 125:156–160CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2015

Authors and Affiliations

  • Lixia Wang
    • 1
  • Shinji Kikuchi
    • 2
  • Chiaki Muto
    • 3
  • Ken Naito
    • 3
    Email author
  • Takehisa Isemura
    • 3
  • Masao Ishimoto
    • 4
  • Xuzhen Cheng
    • 1
  • Akito Kaga
    • 3
  • Norihiko Tomooka
    • 3
  1. 1.Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
  2. 2.Graduate School of HorticultureChiba UniversityChibaJapan
  3. 3.Genetic Resource CenterNational Institute of Agrobiological SciencesTsukubaJapan
  4. 4.Agrogenomics Research CenterNational Institute of Agrobiological SciencesTsukubaJapan

Personalised recommendations