Journal of Plant Research

, Volume 128, Issue 4, pp 709–718 | Cite as

Sequence and expression analysis of putative Arachis hypogaea (peanut) Nod factor perception proteins

  • Fernando Ibáñez
  • Jorge Angelini
  • María Soledad Figueredo
  • Vanina Muñoz
  • María Laura Tonelli
  • Adriana FabraEmail author
Regular Paper


Peanut, like most legumes, develops a symbiotic relationship with rhizobia to overcome nitrogen limitation. Rhizobial infection of peanut roots occurs through a primitive and poorly characterized intercellular mechanism. Knowledge of the molecular determinants of this symbiotic interaction is scarce, and little is known about the molecules implicated in the recognition of the symbionts. Here, we identify the LysM extracellular domain sequences of two putative peanut Nod factor receptors, named AhNFR1 and AhNFP. Phylogenetic analyses indicated that they correspond to LjNFR1 and LjNFR5 homologs, respectively. Transcriptional analysis revealed that, unlike LjNFR5, AhNFP expression was not induced at 8 h post bradyrhizobial inoculation. Further examination of AhNFP showed that the predicted protein sequence is identical to GmNFR5 in two positions that are crucial for Nod factor perception in other legumes. Analysis of the AhNFP LysM2 tridimensional model revealed that these two amino acids are very close, delimiting a zone of the molecule essential for Nod factor recognition. These data, together with the analysis of the molecular structure of Nod factors of native peanut symbionts previously reported, suggest that peanut and soybean could share some of the determinants involved in the signalling cascade that allows symbiosis establishment.


Bradyrhizobia Molecular recognition Nod factor Nod factor receptor proteins Peanut Symbiosis 



The authors would like to thank Dr. Peggy Ozias-Akins and Dr. Yuofang Guo (UGA, Athens) for performing BLAST searches and providing peanut contig sequences. This study was financially supported by the SECyT-UNRC, CONICET, Ministerio de Ciencia y Tecnología de Córdoba and ANPCyT grants. V. Muñoz and M. Figueredo are recipients of scholarships from CONICET. F. Ibáñez, J. Angelini, M. L. Tonelli and A. Fabra are members of the Research Career from CONICET.

Supplementary material

10265_2015_719_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 34 kb)


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCentralPubMedCrossRefGoogle Scholar
  2. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201PubMedCrossRefGoogle Scholar
  3. Arrighi JF, Barre A, Ben Amor B, Bersoult A, Soriano LC, Mirabella R, de Carvalho-Niebel F, Journet EP, Ghérardi M, Huguet T, Geurts R, Dénarié J, Rougé P, Gough C (2006) The Medicago truncatula lysin motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol 142:265–279PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bateman A, Bycroft M (2000) The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D MltD. J Mol Biol 299:1113–1119PubMedCrossRefGoogle Scholar
  5. Bensmihen S, de Billy F, Gough C (2011) Contribution of NFP LysM domains to the recognition of Nod factors during the Medicago truncatula/Sinorhizobium meliloti symbiosis. PLoS One 6:e26114. doi: 10.1371/journal.pone.0026114 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Birkeland NK (1994) Cloning, molecular characterization, and expression of the genes encoding the lytic functions of lactococcal bacteriophage phi LC3: a dual lysis system of modular design. Can J Microbiol 40:658–665PubMedCrossRefGoogle Scholar
  7. Bonaldi K, Gargani D, Prin Y, Fardoux J, Gully D, Nouwen N, Goormachtig S, Giraud E (2011) Nodulation of Aeschynomene afraspera and A. indica by photosynthetic Bradyrhizobium sp. strain ORS285: the nod-dependent versus the nod-independent symbiotic interaction. Mol Plant Microbe Interact 24:1359–1371PubMedCrossRefGoogle Scholar
  8. Boogerd F, van Rossum D (1997) Nodulation of groundnut by Bradyrhizobium: a simple infection process by crack entry. FEMS Microbiol Rev 21:5–27CrossRefGoogle Scholar
  9. Broghammer A, Krusell L, Blaise M, Sauer J, Sullivan JT, Maolanon N, Vinther M, Lorentzen A, Madsen EB, Jensen KJ, Roepstorff P, Thirup S, Ronson CW, Thygesen MB, Stougaard J (2012) Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proc Natl Acad Sci USA 109:13859–13864PubMedCentralPubMedCrossRefGoogle Scholar
  10. Buist G, Steen A, Kok J, Kuipers OP (2008) LysM, a widely distributed protein motif for binding to peptidoglycans. Mol Microbiol 68:838–847PubMedCrossRefGoogle Scholar
  11. Carlson RW, Sanjuan J, Bhat UR, Glushka J, Spaink HP, Wijfjes AH, van Brussel AA, Stokkermans TJ, Peters NK, Stacey G (1993) The structures and biological activities of the lipo-oligosaccharide nodulation signals produced by type I and II strains of B. japonicum. J Biol Chem 268:18372–18381PubMedGoogle Scholar
  12. Doyle JJ, Luckow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910PubMedCentralPubMedCrossRefGoogle Scholar
  13. Duan X, Schmidt E, Li P, Lenox D, Liu L, Shu C, Zhang J, Liang C (2012) PeanutDB: an integrated bioinformatics web portal for Arachis hypogaea transcriptomics. BMC Plant Biol 19(12):94CrossRefGoogle Scholar
  14. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Verméglio A, Médigue C, Sadowsky M (2007) Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312PubMedCrossRefGoogle Scholar
  15. Gough C, Jacquet C (2013) Nod factor perception protein carries weight in biotic interactions. Trends Plant Sci 18:566–574PubMedCrossRefGoogle Scholar
  16. Guindon S, Gascuel O (2003) PhyML-A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  17. Hoagland D, Arnon D (1950) Water culture method for growing plants without soil. Calif Agric Exp Stn 347:1–32Google Scholar
  18. Ibañez F, Fabra A (2011) Rhizobial Nod factors are required for cortical cell division in the nodule morphogenetic programme of the Aeschynomeneae legume Arachis. Plant Biol 13:794–800PubMedCrossRefGoogle Scholar
  19. Indrasumunar A, Kereszt A, Searle I, Miyagi M, Li D, Nguyen CD, Men A, Carroll BJ, Gresshoff PM (2010) Inactivation of duplicated nod factor receptor 5 (NFR5) genes in recessive loss-of-function non-nodulation mutants of allotetraploid soybean (Glycine max L. Merr.). Plant Cell Physiol 51:201–214PubMedCrossRefGoogle Scholar
  20. Jayashree B, Ferguson M, Ilut D, Doyle J, Crouch JH (2005) Analysis of genomic sequences from peanut (Arachis hypogaea). Electron J Biotech 8:226–237CrossRefGoogle Scholar
  21. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282PubMedGoogle Scholar
  22. Joris B, Englebert S, Chu CP, Kariyama R, Daneo-Moore L, Shockman GD, Ghuysen JM (1992) Modular design of the Enterococcus hirae muramidase-2 and Streptococcus faecalis autolysin. FEMS Microbiol Lett 70:257–264PubMedCrossRefGoogle Scholar
  23. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  24. Lefebvre B, Klaus-Heisen D, Pietraszewska-Bogiel A, Hervé C, Camut S, Auriac MC, Gasciolli V, Nurisso A, Gadella TW, Cullimore J (2012) Role of N-glycosylation sites and CXC motifs in trafficking of Medicago truncatula Nod factor perception protein to the plasma membrane. J Biol Chem 287:10812–10823PubMedCentralPubMedCrossRefGoogle Scholar
  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  26. Lohmann GV, Shimoda Y, Nielsen MW, Jørgensen FG, Grossmann C, Sandal N, Sørensen K, Thirup S, Madsen LH, Tabata S, Sato S, Stougaard J, Radutoiu S (2010) Evolution and regulation of the Lotus japonicus LysM receptor gene family. Mol Plant Microbe Interact 23:510–521PubMedCrossRefGoogle Scholar
  27. Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637–640PubMedCrossRefGoogle Scholar
  28. Madsen LH, Tirichine L, Jurkiewicz A, Sullivan JT, Heckmann AB, Bek AS, Ronson CW, James EK, Stougaard J (2010) The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat Commun 1:10PubMedCrossRefGoogle Scholar
  29. Madsen EB, Antolín-Llovera M, Grossmann C, Ye J, Vieweg S, Broghammer A, Krusell L, Radutoiu S, Jensen ON, Stougaard J, Parniske M (2011) Autophosphorylation is essential for the in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5. Plant J 65:404–417PubMedCrossRefGoogle Scholar
  30. Okazaki S, Kaneko T, Sato S, Saeki K (2013) Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proc Natl Acad Sci USA 110:17131–17136PubMedCentralPubMedCrossRefGoogle Scholar
  31. Oldroyd G, Downie J (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546PubMedCrossRefGoogle Scholar
  32. Op den Camp R, Streng A, De Mita S, Cao Q, Polone E, Liu W, Ammiraju JS, Kudrna D, Wing R, Untergasser A, Bisseling T, Geurts R (2011) LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science 331:909–912PubMedCrossRefGoogle Scholar
  33. Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimarães P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B, Cook DR, Bertioli DJ, Michelmore R, Varshney RK (2012) Advances in Arachis genomics for peanut improvement. Biotechnol Adv 30:639–651PubMedCrossRefGoogle Scholar
  34. Perret X, Staehelin C, Broughton W (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201PubMedCentralPubMedCrossRefGoogle Scholar
  35. Ponting CP, Aravind L, Schultz J, Bork P, Koonin EV (1999) Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J Mol Biol 289:729–745PubMedCrossRefGoogle Scholar
  36. Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Grønlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592PubMedCrossRefGoogle Scholar
  37. Radutoiu S, Madsen LH, Madsen EB, Jurkiewicz A, Fukai E, Quistgaard EM, Albrektsen AS, James EK, Thirup S, Stougaard J (2007) LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J 26:3923–3935PubMedCentralPubMedCrossRefGoogle Scholar
  38. Rey T, Nars A, Bonhomme M, Bottin A, Huguet S, Balzergue S, Jardinaud MF, Bono JJ, Cullimore J, Dumas B, Gough C, Jacquet C (2013) NFP, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens. New Phytol 198:875–886PubMedCrossRefGoogle Scholar
  39. Sinharoy S, DasGupta M (2009) RNA interference highlights the role of CCaMK in dissemination of endosymbionts in the Aeschynomeneae legume Arachis. Mol Plant Microbe Interact 22:1466–1475PubMedCrossRefGoogle Scholar
  40. Stokkermans TJW, Orlando R, Kolli VSK, Carlson RW, Peters NK (1996) Biological activities and structures of Bradyrhizobium elkanii low abundance lipo chitin-oligosaccharides. Mol Plant Microbe Interact 9:298–304CrossRefGoogle Scholar
  41. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  42. Taurian T, Morón B, Soria-Díaz ME, Angelini JG, Tejero-Mateo P, Gil-Serrano A, Megías M, Fabra A (2008) Signal molecules in the peanut-bradyrhizobia interaction. Arch Microbiol 189:345–356PubMedCrossRefGoogle Scholar
  43. Uheda E, Daimon H, Yoshizako F (2001) Colonization and invasion of peanut Arachis hypogea L. roots by gusA-marked Bradyrhizobium sp. Can J Bot 79:733–738Google Scholar
  44. Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699PubMedCrossRefGoogle Scholar
  45. Zhang XC, Wu X, Findley S, Wan J, Libault M, Nguyen HT, Cannon SB, Stacey G (2007) Molecular evolution of lysin motif-type receptor-like kinases in plants. Plant Physiol 144:623–636PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2015

Authors and Affiliations

  • Fernando Ibáñez
    • 1
  • Jorge Angelini
    • 1
  • María Soledad Figueredo
    • 1
  • Vanina Muñoz
    • 1
  • María Laura Tonelli
    • 1
  • Adriana Fabra
    • 1
    • 2
    Email author
  1. 1.Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y NaturalesUniversidad Nacional de Río CuartoRío CuartoArgentina
  2. 2.Laboratorio 21, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y NaturalesUniversidad Nacional de Río CuartoRío CuartoArgentina

Personalised recommendations