Advertisement

Journal of Plant Research

, Volume 128, Issue 4, pp 679–686 | Cite as

Identification of Arabidopsis thaliana NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones

  • Yasutaka Chiba
  • Takafumi Shimizu
  • Shinya Miyakawa
  • Yuri Kanno
  • Tomokazu Koshiba
  • Yuji Kamiya
  • Mitsunori SeoEmail author
Regular Paper

Abstract

NRT1/PTR FAMILY (NPF) proteins were originally identified as nitrate or di/tri-peptide transporters. Recent studies revealed that this transporter family also transports the plant hormones auxin (indole-3-acetic acid), abscisic acid (ABA), and gibberellin (GA), as well as secondary metabolites (glucosinolates). We developed modified yeast two-hybrid systems with receptor complexes for GA and jasmonoyl-isoleucine (JA-Ile), to detect GA and JA-Ile transport activities of proteins expressed in the yeast cells. Using these GA and JA-Ile systems as well as the ABA system that we had introduced previously, we determined the capacities of Arabidopsis NPFs to transport these hormones. Several NPFs induced the formation of receptor complexes under relatively low hormone concentrations. Hormone transport activities were confirmed for some NPFs by direct analysis of hormone uptake of yeast cells by liquid chromatography–tandem mass spectrometry. Our results suggest that at least some NPFs could function as hormone transporters.

Keywords

Abscisic acid (ABA) Arabidopsis (Arabidopsis thalianaGibberellin (GA) Jasmonoyl-isoleucine (JA-Ile) NRT1/PTR FAMILY (NPF) Transport 

Notes

Acknowledgments

This work was supported in part by the Japan Society of Promotion of Science (JSPS) KAKENHI [Challenging Exploratory Research (24657040) to M.S.].

Supplementary material

10265_2015_710_MOESM1_ESM.pdf (94 kb)
Supplementary material 1 (PDF 93 kb)
10265_2015_710_MOESM2_ESM.pdf (17 kb)
Supplementary material 2 (PDF 17 kb)
10265_2015_710_MOESM3_ESM.docx (87 kb)
Supplementary material 3 (DOCX 87.4 kb)
10265_2015_710_MOESM4_ESM.docx (63 kb)
Supplementary material 4 (DOCX 62.8 kb)

References

  1. Almagro A, Lin SH, Tsay YF (2008) Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. Plant Cell 20:3289–3299PubMedCentralPubMedCrossRefGoogle Scholar
  2. Blakeslee JJ, Peer WA, Murphy AS (2005) Auxin transport. Curr Opin Plant Biol 8:494–500PubMedCrossRefGoogle Scholar
  3. Boursiac Y, Leran S, Corratge-Faillie C, Gojon A, Krouk G, Lacombe B (2013) ABA transport and transporters. Trends Plant Sci 18:325–333PubMedCrossRefGoogle Scholar
  4. Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, Koiwai H, Seo M, Toyomasu T, Mitsuhashi W, Shinozaki K, Nakazono M, Kamiya Y, Koshiba T, Nambara E (2008) Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol 147:1984–1993PubMedCentralPubMedCrossRefGoogle Scholar
  5. Fan SC, Lin CS, Hsu PK, Lin SH, Tsay YF (2009) The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell 21:2750–2761PubMedCentralPubMedCrossRefGoogle Scholar
  6. Guo FQ, Young J, Crawford NM (2003) The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis. Plant Cell 15:107–117PubMedCentralPubMedCrossRefGoogle Scholar
  7. Habets ME, Offringa R (2014) PIN-driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signals. New Phytol 203:362–377PubMedCrossRefGoogle Scholar
  8. Hsu PK, Tsay YF (2013) Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth. Plant Physiol 163:844–856PubMedCentralPubMedCrossRefGoogle Scholar
  9. Huang NC, Liu KH, Lo HJ, Tsay YF (1999) Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell 11:1381–1392PubMedCentralPubMedCrossRefGoogle Scholar
  10. Jiang F, Hartung W (2008) Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J Exp Bot 59:37–43PubMedCrossRefGoogle Scholar
  11. Jikumaru Y, Asami T, Seto H, Yoshida S, Yokoyama T, Obara N, Hasegawa M, Kodama O, Nishiyama M, Okada K, Nojiri H, Yamane H (2004) Preparation and biological activity of molecular probes to identify and analyze jasmonic acid-binding proteins. Biosci Biotechnol Biochem 68:1461–1466PubMedCrossRefGoogle Scholar
  12. Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci USA 107:2355–2360PubMedCentralPubMedCrossRefGoogle Scholar
  13. Kanno Y, Hanada A, Chiba Y, Ichikawa T, Nakazawa M, Matsui M, Koshiba T, Kamiya Y, Seo M (2012) Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci USA 109:9653–9658PubMedCentralPubMedCrossRefGoogle Scholar
  14. Karim S, Holmstrom KO, Mandal A, Dahl P, Hohmann S, Brader G, Palva ET, Pirhonen M (2007) AtPTR3, a wound-induced peptide transporter needed for defence against virulent bacterial pathogens in Arabidopsis. Planta 225:1431–1445PubMedCrossRefGoogle Scholar
  15. Kende H, Zeevaart J (1997) The five “classical” plant hormones. Plant Cell 9:1197–1210PubMedCentralPubMedCrossRefGoogle Scholar
  16. Ko D, Kang J, Kiba T, Park J, Kojima M, Do J, Kim KY, Kwon M, Endler A, Song WY, Martinoia E, Sakakibara H, Lee Y (2014) Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc Natl Acad Sci USA 111:7150–7155PubMedCentralPubMedCrossRefGoogle Scholar
  17. Koiwai H, Nakaminami K, Seo M, Mitsuhashi W, Toyomasu T, Koshiba T (2004) Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol 134:1697–1707PubMedCentralPubMedCrossRefGoogle Scholar
  18. Komarova NY, Thor K, Gubler A, Meier S, Dietrich D, Weichert A, Suter Grotemeyer M, Tegeder M, Rentsch D (2008) AtPTR1 and AtPTR5 transport dipeptides in planta. Plant Physiol 148:856–869PubMedCentralPubMedCrossRefGoogle Scholar
  19. Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–344PubMedCrossRefGoogle Scholar
  20. Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A (2010) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18:927–937PubMedCrossRefGoogle Scholar
  21. Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, Moriyama Y, Shinozaki K (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci USA 107:2361–2366PubMedCentralPubMedCrossRefGoogle Scholar
  22. Leran S, Varala K, Boyer JC, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong JM, Halkier BA, Harris JM, Hedrich R, Limami AM, Rentsch D, Seo M, Tsay YF, Zhang M, Coruzzi G, Lacombe B (2014) A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci 19:5–9PubMedCrossRefGoogle Scholar
  23. Li JY, Fu YL, Pike SM, Bao J, Tian W, Zhang Y, Chen CZ, Li HM, Huang J, Li LG, Schroeder JI, Gassmann W, Gong JM (2010) The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell 22:1633–1646PubMedCentralPubMedCrossRefGoogle Scholar
  24. Lin SH, Kuo HF, Canivenc G, Lin CS, Lepetit M, Hsu PK, Tillard P, Lin HL, Wang YY, Tsai CB, Gojon A, Tsay YF (2008) Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell 20:2514–2528PubMedCentralPubMedCrossRefGoogle Scholar
  25. Lumba S, Cutler S, McCourt P (2010) Plant nuclear hormone receptors: a role for small molecules in protein–protein interactions. Annu Rev Cell Dev Biol 26:445–469PubMedCrossRefGoogle Scholar
  26. Matsuura H, Takeishi S, Kiatoka N, Sato C, Sueda K, Masuta C, Nabeta K (2012) Transportation of de novo synthesized jasmonoyl isoleucine in tomato. Phytochemistry 83:25–33PubMedCrossRefGoogle Scholar
  27. Nakajima M, Shimada A, Takashi Y, Kim YC, Park SH, Ueguchi-Tanaka M, Suzuki H, Katoh E, Iuchi S, Kobayashi M, Maeda T, Matsuoka M, Yamaguchi I (2006) Identification and characterization of Arabidopsis gibberellin receptors. Plant J 46:880–889PubMedCrossRefGoogle Scholar
  28. Nour-Eldin HH, Andersen TG, Burow M, Madsen SR, Jorgensen ME, Olsen CE, Dreyer I, Hedrich R, Geiger D, Halkier BA (2012) NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature 488:531–534PubMedCrossRefGoogle Scholar
  29. Parker JL, Newstead S (2014) Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature 507:68–72PubMedCentralPubMedCrossRefGoogle Scholar
  30. Petrasek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688PubMedCrossRefGoogle Scholar
  31. Pimenta Lange MJ, Knop N, Lange T (2012) Stamen-derived bioactive gibberellin is essential for male flower development of Cucurbita maxima L. J Exp Bot 63:2681–2691PubMedCentralPubMedCrossRefGoogle Scholar
  32. Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071–1078PubMedCrossRefGoogle Scholar
  33. Santner A, Calderon-Villalobos LI, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5:301–307PubMedCrossRefGoogle Scholar
  34. Seo M, Koshiba T (2011) Transport of ABA from the site of biosynthesis to the site of action. J Plant Res 124:501–507PubMedCrossRefGoogle Scholar
  35. Sun J, Bankston JR, Payandeh J, Hinds TR, Zagotta WN, Zheng N (2014) Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 507:73–77PubMedCentralPubMedCrossRefGoogle Scholar
  36. Swarup R, Peret B (2012) AUX/LAX family of auxin influx carriers—an overview. Front Plant Sci 3:225PubMedCentralPubMedCrossRefGoogle Scholar
  37. Takeuchi J, Okamoto M, Akiyama T, Muto T, Yajima S, Sue M, Seo M, Kanno Y, Kamo T, Endo A, Nambara E, Hirai N, Ohnishi T, Cutler SR, Todoroki Y (2014) Designed abscisic acid analogs as antagonists of PYL–PP2C receptor interactions. Nat Chem Biol 10:477–482PubMedCrossRefGoogle Scholar
  38. Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 581:2290–2300PubMedCrossRefGoogle Scholar
  39. Wang YY, Tsay YF (2011) Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport. Plant Cell 23:1945–1957PubMedCentralPubMedCrossRefGoogle Scholar
  40. Yang H, Murphy AS (2009) Functional expression and characterization of Arabidopsis ABCB, AUX 1 and PIN auxin transporters in Schizosaccharomyces pombe. Plant J 59:179–191PubMedCrossRefGoogle Scholar
  41. Zhang H, Zhu H, Pan Y, Yu Y, Luan S, Li L (2014a) A DTX/MATE-type transporter facilitates abscisic acid efflux and modulates ABA sensitivity and drought tolerance in Arabidopsis. Mol Plant 7:1522–1532PubMedCrossRefGoogle Scholar
  42. Zhang K, Novak O, Wei Z, Gou M, Zhang X, Yu Y, Yang H, Cai Y, Strnad M, Liu CJ (2014b) Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat Commun 5:3274PubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2015

Authors and Affiliations

  • Yasutaka Chiba
    • 1
    • 2
  • Takafumi Shimizu
    • 2
  • Shinya Miyakawa
    • 1
  • Yuri Kanno
    • 2
  • Tomokazu Koshiba
    • 1
  • Yuji Kamiya
    • 2
  • Mitsunori Seo
    • 1
    • 2
    Email author
  1. 1.Department of Biological SciencesTokyo Metropolitan UniversityHachioji-shiJapan
  2. 2.RIKEN Center for Sustainable Resource ScienceYokohamaJapan

Personalised recommendations