Skip to main content
Log in

Bidirectional but asymmetrical sexual hybridization between Brassica carinata and Sinapis arvensis (Brassicaceae)

Journal of Plant Research Aims and scope Submit manuscript

Abstract

With transgenic crop development it is important to evaluate the potential for transgenes to escape into populations of wild, weedy relatives. Ethiopian mustard (Brassica carinata, BBCC) is easily transformed and is being investigated for uses from biodiesel fuels to biopharmaceuticals. However, little work has been done evaluating its ability to cross with relatives such as wild mustard (Sinapsis arvensis, SrSr), an abundant, cosmopolitan weedy relative. Here we conducted bidirectional crosses with Ethiopian mustard as a maternal parent in 997 crosses and paternal parent in 1,109 crosses. Hybrids were confirmed using flow cytometry and species-specific ITS molecular markers and indicate a high hybridization rate of 6.43 % between Ethiopian mustard (♀) and wild mustard (♂) and a lower, but not insignificant, hybridization rate of 0.01 % in the reverse direction. The majority of the hybrids were homoploid (BCSr) with less than 1 % of pollen production of their parents and low seed production (0.26 seeds/pollination) in crosses and backcrosses indicating a potential for advanced generation hybrids. The accession used had a significant effect on hybrid seed production with different accessions of Ethopian mustard varying in their production of hybrid offspring from 2.69 to 16.34 % and one accession of wild mustard siring almost twice as many hybrid offspring per flower as the other. One pentaploid (BBCCSr) and one hexaploid (BBCCSrSr) hybrid were produced and had higher pollen viability, though no and low seed production, respectively. As wild mustard is self-incompatible and the outcrossing rate of Ethiopian mustard has been estimated as 30 % potential for hybrid production in the wild appears to be high, though the hybridization rate found here represents a worst case scenario as it does not incorporate pre-pollination barriers. Hybridization in the wild needs to be directly evaluated as does the propensity of Ethiopian mustard to volunteer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Addis G, Urga K, Dikasso D (2005) Ethnobotanical study of edible wild plants in some selected districts of Ethiopia. Hum Ecol 33:83–118. doi:10.1007/s10745-005-1656-0

    Article  Google Scholar 

  • Armstrong TT, Fitzjohn RG, Newstrom LE et al (2005) Transgene escape: what potential for crop-wild hybridization? Mol Ecol 14:2111–2132. doi:10.1111/j.1365-294X.2005.02572.x

    Article  CAS  PubMed  Google Scholar 

  • Babic V, Datla RS, Scoles GJ, Keller WA (1998) Development of an efficient Agrobacterium -mediated transformation system for Brassica carinata. Plant Cell Rep 17:183–188. doi:10.1007/s002990050375

    Article  CAS  Google Scholar 

  • Becker HC, Damgaard C, Karlsson B (1992) Environmental variation for outcrossing rate in rapeseed (Brassica napus). Theor Appl Genet 84:303–306

    CAS  PubMed  Google Scholar 

  • Cardone M, Mazzoncini M, Menini S et al (2003) Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: agronomic evaluation, fuel production by transesterification and characterization. Biomass Bioenergy 25:623–636. doi:10.1016/S0961-9534(03)00058-8

    Article  CAS  Google Scholar 

  • Chaudhary S, Parmenter DL, Moloney MM (1998) Transgenic Brassica carinata as a vehicle for the production of recombinant proteins in seeds. Plant Cell Rep 17:195–200

    Article  CAS  Google Scholar 

  • Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110. doi:10.1093/aob/mci005

    Article  PubMed Central  PubMed  Google Scholar 

  • Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA conteet in plants. Physiol Plant 85:625–631

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Flow cytometry with plants: an overview. In: Doležel J, Greilhuber J, Suda J (eds) Flow Cytometry with plant cells. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 41–66

    Chapter  Google Scholar 

  • Ellstrand NC (2003) Dangerous liaisons? When cultivated plants mate with their wild relatives. JHU Press, USA

    Google Scholar 

  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–563. doi:10.1146/annurev.ecolsys.30.1.539

    Article  Google Scholar 

  • FitzJohn RG, Armstrong TT, Newstrom-Lloyd LE et al (2007) Hybridisation within Brassica and allied genera: evaluation of potential for transgene escape. Euphytica 158:209–230. doi:10.1007/s10681-007-9444-0

    Article  Google Scholar 

  • Fox J, Weisberg S (2011) An R companion to applied regression. Sage, Thousand Oaks

    Google Scholar 

  • Garcia-Alonso M, Jacobs E, Raybould A et al (2006) A tiered system for assessing the risk of genetically modified plants to non-target organisms. Environ Biosaf Res 5:57–65

    Article  Google Scholar 

  • Gasol CM, Gabarrell X, Anton A et al (2007) Life cycle assessment of a Brassica carinata bioenergy cropping system in southern Europe. Biomass Bioenergy 31:543–555. doi:10.1016/j.biombioe.2007.01.026

    Article  Google Scholar 

  • Getinet A, Rakow G, Downey RK (1996) Agronomic performance and seed quality of Ethiopian mustard in Saskatchewan. Can J Plant Sci 76:387–392

    Article  Google Scholar 

  • Giraudoux P (2013) pgirmess: data analysis in ecology. R package version 1.5.7. http://CRAN.R-project.org/package=pgirmess. Accessed 15 July 2014

  • Gugel RK, Séguin-Swartz G, Pétrie GA (1990) Pathogenicity of three isolates of Leptosphaeria maculans on Brassica species and other crucifers. Can J Plant Pathol 12:75–82. doi:10.1080/07060669009501045

    Article  Google Scholar 

  • Håkansson A (1956) Seed Development of Brassica oleracea and B. rapa after certain reciprocal polliations. Hereditas 42:373–396

    Article  Google Scholar 

  • Halfhill MD, Zhu B, Warwick SI et al (2004) Hybridization and backcrossing between transgenic oilseed rape and two related weed species under field conditions. Environ Biosaf Res 3:73–81. doi:10.1051/ebr:2004007

    Article  Google Scholar 

  • Hall LM, Rahman MH, Gulden RH, Thomas AG (2005) Volunter oilseed rape—will herbicide-resistance assit ferality? In: Gressel J (ed) Crop Feral. Volunt. Taylor & Francis, Boca Raton, London, New York, Singapore, pp 59–79

    Google Scholar 

  • Harrell FE Jr (2013) Hmisc: Harrell miscellaneous. R package version 3.10-1.1. http://CRAN.R-project.org/package=Hmisc. Accessed 15 July 2014

  • Heenan PB, Dawson MI, FitzJohn RG, Stewart AV (2007) Experimental hybridisation of Brassica species in New Zealand. N Z J Bot 45:53–66

    Article  Google Scholar 

  • Jenczewski E, Ronfort J, Chèvre A (2003) Crop-to-wild gene flow, introgression and possible fitness effects of transgenes. Environ Biosaf Res 2:9–24. doi:10.1051/ebr

    Article  Google Scholar 

  • Jhala A, Bhatt H, Topinka K, Hall L (2011) Pollen-mediated gene flow in flax (Linum usitatissimum L.): can genetically engineered and organic flax coexist? Heredity (Edinburgh) 106:557–566. doi:10.1038/hdy.2010.81

    Article  CAS  Google Scholar 

  • Khoshoo TN, Raj B (1960) Seed development following the reciprocal matings between the diploid and the autotetraploid strains of Sisymbrium Irio Var. Subtorulosum. Caryologia 13:379–397. doi:10.1080/00087114.1960.10797088

    Article  Google Scholar 

  • Kwit C, Moon HS, Warwick SI, Stewart CN (2011) Transgene introgression in crop relatives: molecular evidence and mitigation strategies. Trends Biotechnol 29:284–293

    Article  CAS  PubMed  Google Scholar 

  • Leeson JY, Thomas AG, Hall LH et al (2005) Prairie weed surveys of cereal, oilseed and pulse crops from the 1970s to the 2000s. Weed Survey Series Publ. 05-1. Agriculture and Agri-Food Canada, Canada

  • Légère A (2005) Risks and consequences of gene flow from herbicide-resistant crops: canola (Brassica napus L.) as a case study. Pest Manag Sci 61:292–300. doi:10.1002/ps.975

    Article  PubMed  Google Scholar 

  • Lemon J (2006) Plotrix: a package in the red light district of R. R-News 6:8–12

    Google Scholar 

  • Malik RS (1990) Prospects for Brassica carinata as an oilseed crop in India. Exp Agric 26:125–129

    Article  Google Scholar 

  • Marillia E-F, Francis T, Falk KC et al (2014) Palliser’s promise: Brassica carinata, an emerging Western Canadian crop for delivery of new bio-industrial oil feedstocks. Biocatal Agric Biotechnol 3:65–74

    Google Scholar 

  • Mizushima U (1950) Karyogenetic studies of species and genus hybrids in the tribe Brassiceae of Cruciferae. Tohoku J Agric Res 1:1–14

    Google Scholar 

  • Momotaz A, Kato M, Kakihara F (1998) Production of intergeneric hybrids between Brassica and Sinapis species by means of embryo rescue techniques. Euphytica 103:123–130

    Article  Google Scholar 

  • Momotaz A, Kato M, Kakihara F (2000) Variaion in seed fertility and fatty acid composition in the allohexaploids between Brassica carinata and Sinapis species with the advance of generations. Breed Sci 50:91–99

    Article  CAS  Google Scholar 

  • Morgan ER, Timmerman-vaughan GM, Conner AJ et al (2011) Plant interspecific hybridization: outcomes and issues at the intersection of species. Plant Breed Rev 34:161–220

    Article  Google Scholar 

  • Mulligan GA, Bailey LG (1975) The biology of Canadian weeds. 8. Sinapis arvensis L. Can J Plant Sci Plant Sci 55:171–183

    Article  Google Scholar 

  • Müntzing A (1932) Hybrid incompatibility and the origin of polyploidy. Hereditas 18:33–55

    Article  Google Scholar 

  • Namai H, Sarashima M, Hosoda T (1980) Interspecific and intergeneric hybridization breeding in Japan. In: Tsunoda S, Hinata K, Gómez-Campo C (eds) Brassica crops and wild allies biology and breeding. Japan Scientific Press, Tokyo, pp 191–203

    Google Scholar 

  • Olsson G, Ellerström S (1980) Polyploidy and breeding in Europe. In: Tsunoda S, Hinata K, Gómez-Campo C (eds) Brassica crops and wild allies biology and breeding. Japan Scientific Press, Tokyo, pp 167–187

    Google Scholar 

  • Pessel FD, Lecomte J, Emeriau V et al (2001) Persistence of oilseed rape (Brassica napus L.) outside of cultivated fields. Theor Appl Genet 102:841–846

    Article  Google Scholar 

  • Pilson D, Prendeville HRHR (2004) Effects of transgenic crops and the escape of transgenes into wild populations. Annu Rev Ecol Syst 35:149–174. doi:10.2307/annurev.ecolsys.34.011802.30000007

    Article  Google Scholar 

  • Pivard S, Adamczyk K, Lecomte J et al (2008) Where do the feral oilseed rape populations come from? A large-scale study of their possible origin in a farmland area. J Appl Ecol 45:476–485. doi:10.1111/j.1365-2664.2007.01358.x

    Article  Google Scholar 

  • Prado JR, Segers G, Voelker T et al (2014) Genetically engineered crops: from idea to product. Annu Rev Plant Biol 65:769–790. doi:10.1146/annurev-arplant-050213-040039

    Article  CAS  PubMed  Google Scholar 

  • Prakash S, Wu X-M, Bhat SR (2012) History, evolution, and domestication of Brassica crops. Plant Breed Rev 35:19–84

    Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 15 July 2014

  • Rakow G, Getinet A (1998) Brassica carinata an oilseed crop for Canada. In: Gregorie T, Monteiro A (eds) Proceedings of international symposium Brassicas 97, Xth crucifer genetics workshop, pp 419–426

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501. doi:10.1146/annurev.ecolsys.29.1.467

    Article  Google Scholar 

  • Salisbury PA (1989) Potential utilization of wild crucifer germplasm in oilseed Brassica breeding. In: Proceedings of 7th Australian rapeseed agronomists and breeders workshop, pp 51–53

  • Snow AA, Andow DA, Gepts P et al (2004) Genetically engineered organisms and the environment. Curr Status Recomm 2004:1–55

    Google Scholar 

  • Stewart CN, Halfhill MD, Warwick SI (2003) Transgene introgression from genetically modified crops to their wild relatives. Nat Rev Genet 4:806–817. doi:10.1038/nrg1179

    Article  CAS  PubMed  Google Scholar 

  • Taylor DC, Falk KC, Palmer CD et al (2010) Brassica carinata - a new molecular farming platform for delivering bio-industrial oil feedstocks: case studies of genetic modifications to improve very long-chain fatty acid and oil content in seeds. Biofuels Bioprod Biorefin 4:538–561. doi:10.1002/bbb.231

    Article  CAS  Google Scholar 

  • Thompson WP (1930) Causes of difference in success of reciprocal interspecific crosses. Am Nat 64:407–421

    Article  Google Scholar 

  • U N (1937) Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

  • Velasco L, Fernández-Martínez JM (2009) Other Brassicas. In: Vollmann J, Rajcan I (eds) Oil Crop. Handbook of plant Breeding. Springer Science + Business Media LLC, New York, pp 127–153

    Google Scholar 

  • Velasco L, Nabloussi A, De Haro A et al (2003) Development of high-oleic, low-linolenic acid Ethiopian-mustard (Brassica carinata) germplasm. Theor Appl Genet 107:823–830. doi:10.1007/s00122-003-1295-z

    Article  CAS  PubMed  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Von der Lippe M, Kowarik I (2007) Crop seed spillage along roads : a factor of uncertainty in the containment of GMO. Ecography (Cop) 30:483–490. doi:10.1111/j.2007.0906-7590.05072.x

    Article  Google Scholar 

  • Warwick SI, Martin SL (2013) Gene flow from transgenic oilseed Brassica juncea (L.) Czern. into weedy Sinapis arvensis L. (wild mustard). Plant Breed 132:688–693

    Article  CAS  Google Scholar 

  • Warwick SI, Sauder CA (2005) Phylogeny of tribe Brassiceae (Brassicaceae) based on chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed spacer and chloroplast trnL intron sequences. Can J Bot 83:467–483. doi:10.1139/B05-021

    Article  CAS  Google Scholar 

  • Warwick SI, Beckie HJ, Thomas AG, Mcdonald T (2000) The biology of Canadian weeds. 8. Sinapis arvensis. L. (updated). Can J Plant Sci 80:939–961

    Article  Google Scholar 

  • Warwick SI, Beckie HJ, Hall LM (2009) Gene flow, invasiveness, and ecological impact of genetically modified crops. Ann N Y Acad Sci 1168:72–99. doi:10.1111/j.1749-6632.2009.04576.x

    Article  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Chapter  Google Scholar 

  • Yoshimura Y, Beckie HJ, Matsuo K (2006) Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada. Environ Biosaf Res 5:67–75. doi:10.1051/ebr

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ellen Wagner, Christopher Martin and Drs. Suzanne Warwick, Linda Hall, Laurian Robert and Tyler Smith for comments on the manuscript and Paul Kron for help with flow cytometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara L. Martin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10265_2015_702_MOESM1_ESM.pdf

Supplementary material 1 (PDF 943 kb) Supporting Information Fig. 1. From left to right inflorescences and stems of wild mustard (Sinapis arvensis), hybrids, and Ethiopian mustard (Brassica carinata)

10265_2015_702_MOESM2_ESM.pdf

Supplementary material 2 (PDF 629 kb) Supporting Information Fig. 2. From left to right developing seed pods for wild mustard (Sinapis arvensis), two hybrid plants (EW-A), and Ethiopian mustard (Brassica carinata)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheung, K.W., Razeq, F.M., Sauder, C.A. et al. Bidirectional but asymmetrical sexual hybridization between Brassica carinata and Sinapis arvensis (Brassicaceae). J Plant Res 128, 469–480 (2015). https://doi.org/10.1007/s10265-015-0702-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-015-0702-2

Keywords

Navigation