Journal of Plant Research

, Volume 128, Issue 2, pp 337–344 | Cite as

AgarTrap-mediated genetic transformation using intact gemmae/gemmalings of the liverwort Marchantia polymorpha L.

Technical Note

Abstract

The dioecious liverwort, Marchantia polymorpha L., is an emerging model plant. Various molecular biological techniques have been optimized for M. polymorpha for the past several years, and recently we reported a simplified Agrobacterium-mediated transformation method using sporelings (immature thalli from spores) of M. polymorpha. This method, termed AgarTrap (Agar-utilized Transformation with Pouring Solutions), completed by exchanging appropriate solutions on a single Petri dish to produce a sufficient number of independent transgenic sporelings. However, because spores are produced by crosses between males and females, the genetic backgrounds of resulting transgenic sporelings are not uniform. To easily produce transgenic liverworts with a uniform genetic background using AgarTrap, we developed an AgarTrap-mediated transformation method using intact gemmae/gemmalings produced by asexual reproduction. Using AgarTrap with male and female gemmae/gemmalings produced a sufficient number of independent transgenic gemmalings with uniform genetic backgrounds. The optimized transformation efficiencies were approximately 30 and 50 % in males and females, respectively. As with AgarTrap using sporelings, AgarTrap using intact gemmae/gemmalings will be useful in promoting studies of the molecular biology of M. polymorpha.

Keywords

Agrobacterium AgarTrap Bryophytes Gemma Marchantia Transformation 

Supplementary material

10265_2014_695_MOESM1_ESM.pdf (23.2 mb)
Supplementary material 1 (PDF 23715 kb)

References

  1. Barnes CR, Land WJG (1908) Bryological papers. II. The origin of the cupule of Marchantia. Bot Gaz 46:401–409CrossRefGoogle Scholar
  2. Bubner B, Gase K, Baldwin IT (2004) Two-fold differences are the detection limit for determining transgene copy numbers in plants by real-time PCR. BMC Biotechnol 4:14CrossRefPubMedCentralPubMedGoogle Scholar
  3. Chiyoda S, Ishizaki K, Kataoka K, Yamato KT, Kohchi T (2008) Direct transformation of the liverwort Marchantia polymorpha L. by particle bombardment using immature thalli developing from spores. Plant Cell Rep 27:1467–1473CrossRefPubMedGoogle Scholar
  4. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735–743CrossRefPubMedGoogle Scholar
  5. Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M et al (1985) Efficient octopine Ti plasmid derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res 13:4777–4788CrossRefPubMedCentralPubMedGoogle Scholar
  6. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158CrossRefPubMedGoogle Scholar
  7. Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31:132–140PubMedGoogle Scholar
  8. Ishizaki K, Chiyoda S, Yamato KT, Kohchi T (2008) Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol 49:1084–1091CrossRefPubMedGoogle Scholar
  9. Ishizaki K, Nonomura M, Kato H, Yamato KT, Kohchi T (2012) Visualization of auxin-mediated transcriptional activation using a common auxin-response reporter system in the liverwort Marchantia polymorpha. J Plant Res 125:643–651CrossRefPubMedGoogle Scholar
  10. Kubota A, Ishizaki K, Kohchi T (2013) Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Biosci Biotech Biochem 77:167–172CrossRefGoogle Scholar
  11. Mason G, Provero P, Vaira AM, Accotto GP (2002) Estimating the number of integrations in transformed plants by quantitative real-time PCR. BMC Biotechnol 2:20CrossRefPubMedCentralPubMedGoogle Scholar
  12. Nasu M, Tani K, Hattori C, Honda M, Shimaoka T, Yamaguchi N et al (1997) Efficient transformation of Marchantia polymorpha that is haploid and has a very small genome DNA. J Ferment Bioeng 84:519–523CrossRefGoogle Scholar
  13. Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N et al (1992) Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J Mol Biol 223:1–7CrossRefPubMedGoogle Scholar
  14. Ogasawara Y, Ishizaki K, Kohchi T, Kodama Y (2013) Cold-induced organelle relocation in the liverwort Marchantia polymorpha L. Plant Cell Environ 36:1520–1528CrossRefPubMedGoogle Scholar
  15. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S et al (1986) Chloroplast gene organization deduced from the complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574CrossRefGoogle Scholar
  16. Ono K, Ohyama K, Gamborg OL (1979) Regeneration of the liverwort Marchantia polymorpha L. from protoplasts isolated from cell suspension culture. Plant Sci Lett 14:225–229CrossRefGoogle Scholar
  17. Qiu YL, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M et al (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 103:15511–15516CrossRefPubMedCentralPubMedGoogle Scholar
  18. Takenaka M, Yamaoka S, Hanajiri T, Shimizu-Ueda Y, Yamato KT, Fukuzawa H et al (2000) Direct transformation and plant regeneration of the haploid liverwort Marchantia polymorpha L. Transgenic Res 9:179–185CrossRefPubMedGoogle Scholar
  19. Tsuboyama S, Kodama Y (2014) AgarTrap: a simplified Agrobacterium-mediated transformation method for sporelings of the liverwort Marchantia polymorpha L. Plant Cell Physiol 55:229–236CrossRefPubMedGoogle Scholar
  20. Yamato KT, Ishizaki K, Fujisawa M, Okada S, Nakayama S, Fujishita M et al (2007) Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system. Proc Natl Acad Sci USA 104:6472–6477CrossRefPubMedCentralPubMedGoogle Scholar
  21. Yang L, Ding J, Zhang C, Jia J, Weng H, Liu W et al (2005) Estimating the copy number of transgene in transformed rice by real-time quantitative PCR. Plant Cell Rep 23:759–763CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2015

Authors and Affiliations

  1. 1.Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiyaJapan

Personalised recommendations