Adam V, Nienhaus K, Bourgeois D, Nienhaus GU (2009) Structural basis of enhanced photoconversion yield in green fluorescent protein-like protein Dendra2. Biochemistry 48:4905–4915
CAS
PubMed
Article
Google Scholar
Ashton N, Grimsley N, Cove D (1979) Analysis of gametophytic development in the moss, Physcomitrella patens, using auxin and cytokinin resistant mutants. Planta 144:427–435
CAS
PubMed
Article
Google Scholar
Benitez-Alfonso Y (2014) Symplastic intercellular transport from a developmental perspective. J Exp Bot:eru067
Benitez-Alfonso Y, Faulkner C, Pendle A, Miyashima S, Helariutta Y, Maule A (2013) Symplastic intercellular connectivity regulates lateral root patterning. Dev Cell 26:136–147
CAS
PubMed
Article
Google Scholar
Bilska A (2013) Regulation of intercellular transport through plasmodesmata under abiotic stresses. In: Sokolowska K, Pawel S (eds) Symplasmic transport in vascular plants. Springer, New York, pp 83–100
Chapter
Google Scholar
Brunkard JO, Runkel AM, Zambryski PC (2013) Plasmodesmata dynamics are coordinated by intracellular signaling pathways. Curr Opin Plant Biol 16:614–620
CAS
PubMed
Article
Google Scholar
Burch-Smith TM, Zambryski PC (2012) Plasmodesmata paradigm shift: regulation from without versus within. Annu Rev Plant Biol 63:239–260
CAS
PubMed
Article
Google Scholar
Burch-Smith TM, Stonebloom S, Xu M, Zambryski PC (2011) Plasmodesmata during development: re-examination of the importance of primary, secondary, and branched plasmodesmata structure versus function. Protoplasma 248:61–74
CAS
PubMed Central
PubMed
Article
Google Scholar
Carlsbecker A, Lee J-Y, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno MA, Vatén A, Thitamadee S (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321
CAS
PubMed Central
PubMed
Article
Google Scholar
Chen H, Ahmad M, Rim Y, Lucas WJ, Kim JY (2013) Evolutionary and molecular analysis of Dof transcription factors identified a conserved motif for intercellular protein trafficking. New Phytol 198:1250–1260
CAS
PubMed
Article
Google Scholar
Chopra R, Kapur A (1989) Effect of abscisic acid and kinetin on protonemal differentiation in Timmiella anomala. Plant Sci 61:203–206
CAS
Article
Google Scholar
Christensen NM, Faulkner C, Oparka K (2009) Evidence for unidirectional flow through plasmodesmata. Plant Physiol 150:96–104
CAS
PubMed Central
PubMed
Article
Google Scholar
Chudakov DM, Lukyanov S, Lukyanov KA (2007) Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nat Protoc 2:2024–2032
CAS
PubMed
Article
Google Scholar
Cook ME, Graham LE, Botha CEJ, Lavin CA (1997) Comparative ultrastructure of plasmodesmata of Chara and selected bryophytes: toward an elucidation of the evolutionary origin of plant plasmodesmata. Am J Bot 84:1169–1178
CAS
PubMed
Article
Google Scholar
Cove D, Bezanilla M, Harries P, Quatrano R (2006) Mosses as model systems for the study of metabolism and development. Ann Rev Plant Biol 57:497–520
CAS
Article
Google Scholar
Crawford KM, Zambryski PC (1999) Plasmodesmata signaling: many roles, sophisticated statutes. Curr Opin Plant Biol 2:382–387
CAS
PubMed
Article
Google Scholar
Crawford KM, Zambryski PC (2001) Non-targeted and targeted protein movement through plasmodesmata in leaves in different developmental and physiological states. Plant Physiol 125:1802–1812
CAS
PubMed Central
PubMed
Article
Google Scholar
Dashevskaya S, Kopito RB, Friedman R, Elbaum M, Epel BL (2008) Diffusion of anionic and neutral GFP derivatives through plasmodesmata in epidermal cells of Nicotiana benthamiana. Protoplasma 234:13–23
CAS
PubMed
Article
Google Scholar
De Storme N, Geelen D (2014) Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. Front Plant Sci 5:138
PubMed Central
PubMed
Article
Google Scholar
Ding B, Kwon MO, Warnberg L (1996) Evidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyll. Plant J 10:157–164
Article
Google Scholar
Duckett CM, Oparka KJ, Prior DAM, Dolan L, Roberts K (1994) Dye-coupling in the root epidermis of Arabidopsis is progressively reduced during development. Development 120:3247–3255
CAS
Google Scholar
Duckett JG, Schmid AM, Ligrone R (1998) Protonemal morphogenesis. In: Bates JW, Ashton NW, Duckett JG (eds) Bryology for the Twenty-first Century. Maney, Leeds, pp 223–246
Google Scholar
Durbak A, Yao H, McSteen P (2012) Hormone signaling in plant development. Curr Opin Plant Biol 15:92–96
CAS
PubMed
Article
Google Scholar
Ehlers K, van Bel AJ (2010) Dynamics of plasmodesmal connectivity in successive interfaces of the cambial zone. Planta 231:371–385
CAS
PubMed
Article
Google Scholar
Epel BL (2009) Plant viruses spread by diffusion on ER-associated movement-protein-rafts through plasmodesmata gated by viral induced host β-1,3-glucanases. Semin Cell Dev Biol 20:1074–1081
CAS
PubMed
Article
Google Scholar
Epel BL, Erlanger MA (1991) Light regulates symplastic communication in etiolated corn seedlings. Physiol Plant 83:149–153
CAS
Article
Google Scholar
Faulkner C, Maule A (2011) Opportunities and successes in the search for plasmodesmal proteins. Protoplasma 248:27–38
CAS
PubMed
Article
Google Scholar
Faulkner C, Petutschnig E, Benitez-Alfonso Y, Beck M, Robatzek S, Lipka V, Maule AJ (2013) LYM2-dependent chitin perception limits molecular flux via plasmodesmata. Proc Natl Acad Sci USA 110:9166–9170
CAS
PubMed Central
PubMed
Article
Google Scholar
Fernandez-Calvino L, Faulkner C, Walshaw J, Saalbach G, Bayer E, Benitez-Alfonso Y, Maule A (2011) Arabidopsis plasmodesmal proteome. PLoS One 6:e18880
CAS
PubMed Central
PubMed
Article
Google Scholar
Furuta K, Lichtenberger R, Helariutta Y (2012) The role of mobile small RNA species during root growth and development. Curr Opin Cell Biol 24:211–216
CAS
PubMed
Article
Google Scholar
Gaudioso-Pedraza R, Benitez-Alfonso Y (2014) A phylogenetic approach to study the origin and evolution of plasmodesmata-localized glycosyl hydrolases family 17. Front Plant Sci 5:212
PubMed Central
PubMed
Article
Google Scholar
Gisel A, Hempel FD, Barella S, Zambryski P (2002) Leaf-to-shoot apex movement of symplastic tracer is restricted coincident with flowering in Arabidopsis. Proc Natl Acad Sci USA 99:1713–1717
CAS
PubMed Central
PubMed
Article
Google Scholar
Goode JA, Stead AD, Duckett JG (1993) Redifferentiation of moss protonemata: an experimental and immunofluorescence study of brood cell formation. Canad J Bot 71:1510–1519
Article
Google Scholar
Guseman JM, Lee JS, Bogenschutz NL, Peterson KM, Virata RE, Xie B, Kanaoka MM, Hong Z, Torii KU (2010) Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis CHORUS (GLUCAN SYNTHASE-LIKE 8). Development 137:1731–1741
CAS
PubMed
Article
Google Scholar
Han X, Hyun TK, Zhang M, Kumar R, E-J Koh, Kang B-H, Lucas WJ, Kim J-Y (2014) Auxin-callose-mediated plasmodesmal gating is essential for tropic auxin gradient formation and signaling. Dev Cell 28:132–146
CAS
PubMed
Article
Google Scholar
Harrison CJ, Roeder AH, Meyerowitz EM, Langdale JA (2009) Local cues and asymmetric cell divisions underpin body plan transitions in the moss Physcomitrella
patens. Curr Biol 19:461–471
CAS
PubMed
Article
Google Scholar
Heidstra R, Sabatini S (2014) Plant and animal stem cells: similar yet different. Nat Rev Mol Cell Biol 15:301–312
CAS
PubMed
Article
Google Scholar
Hisanaga T, Miyashima S, Nakajima K (2014) Small RNAs as positional signal for pattern formation. Curr Opin Plant Biol 21:37–42
CAS
PubMed
Article
Google Scholar
Holdaway-Clarke TL, Walker NA, Hepler PK, Overall RL (2000) Physiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmata. Planta 210:329–335
CAS
PubMed
Article
Google Scholar
Imlau A, Truernit E, Sauer N (1999) Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. Plant Cell 11:309–322
CAS
PubMed Central
PubMed
Article
Google Scholar
Ito K, Ren J, Fujita T (2014) Conserved function of Rho-related Rop/RAC GTPase signaling in regulation of cell polarity in Physcomitrella patens. Gene 544:241–247
CAS
PubMed
Article
Google Scholar
Khandelwal A, Cho S, Marella H, Sakata Y, Perroud PF, Pan A, Quatrano R (2010) Role of ABA and ABI3 in desiccation tolerance. Science 327:546–546
Kim I, Zambryski PC (2005) Cell-to-cell communication via plasmodesmata during Arabidopsis embryogenesis. Curr Opin Plant Biol 8:593–599
CAS
PubMed
Article
Google Scholar
Kim I, Cho E, Crawford K, Hempel FD, Zambryski PC (2005a) Cell-to-cell movement of GFP during embryogenesis and early seedling development in Arabidopsis. Proc Natl Acad Sci U S A 102:2227–2231
CAS
PubMed Central
PubMed
Article
Google Scholar
Kim I, Kobayashi K, Cho E, Zambryski PC (2005b) Subdomains for transport via plasmodesmata corresponding to the apical-basal axis are established during Arabidopsis embryogenesis. Proc Natl Acad Sci USA 102:11945–11950
CAS
PubMed Central
PubMed
Article
Google Scholar
Kitagawa M, Fujita T (2013) Quantitative imaging of directional transport through plasmodesmata in moss protonemata via single-cell photoconversion of Dendra2. J Plant Res 126:577–585
CAS
PubMed Central
PubMed
Article
Google Scholar
Kofuji R, Hasebe M (2014) Eight types of stem cells in the life cycle of the moss Physcomitrella patens. Curr Opin Plant Biol 17:13–21
PubMed
Article
Google Scholar
Kong D, Karve R, Willet A, Chen M-K, Oden J, Shpak ED (2012) Regulation of plasmodesmatal permeability and stomatal patterning by the glycosyltransferase-like protein KOBITO1. Plant Physiol 159:156–168
CAS
PubMed Central
PubMed
Article
Google Scholar
Kubo M, Imai A, Nishiyama T, Ishikawa M, Sato Y, Kurata T, Hiwatashi Y, Reski R, Hasebe M (2013) System for stable β-estradiol-inducible gene expression in the moss Physcomitrella patens. PLoS One 8:e77356
CAS
PubMed Central
PubMed
Article
Google Scholar
Lee J-Y (2014) New and old roles of plasmodesmata in immunity and parallels to tunneling nanotubes. Plant Sci 221:13–20
PubMed
Article
Google Scholar
Lee J-Y, Wang X, Cui W, Sager R, Modla S, Czymmek K, Zybaliov B, van Wijk K, Zhang C, Lu H (2011) A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis. Plant Cell 23:3353–3373
CAS
PubMed Central
PubMed
Article
Google Scholar
Lew RR (2005) Mass flow and pressure-driven hyphal extension in Neurospora crassa. Microbiology 151:2685–2692
CAS
PubMed
Article
Google Scholar
Lew RR (2011) How does a hypha grow? The biophysics of pressurized growth in fungi. Nat Rev Microbiol 9:509–518
CAS
PubMed
Article
Google Scholar
Liarzi O, Epel BL (2005) Development of a quantitative tool for measuring changes in the coefficient of conductivity of plasmodesmata induced by developmental, biotic, and abiotic signals. Protoplasma 225:67–76
CAS
PubMed
Article
Google Scholar
Liesche J, Schulz A (2012a) In vivo quantification of cell coupling in plants with different phloem-loading strategies. Plant Physiol 159:355–365
CAS
PubMed Central
PubMed
Article
Google Scholar
Liesche J, Schulz A (2012b) Quantification of plant cell coupling with three-dimensional photoactivation microscopy. J Microsc 247:2–9
CAS
PubMed
Article
Google Scholar
Martens HJ, Hansen M, Schulz A (2004) Caged probes: a novel tool in studying symplasmic transport in plant tissues. Protoplasma 223:63–66
CAS
PubMed
Article
Google Scholar
Minami A, Nagao M, Arakawa K, Fujikawa S, Takezawa D (2003) Abscisic acid-induced freezing tolerance in the moss Physcomitrella patens is accompanied by increased expression of stress-related genes. J Plant Physiol 160:475–483
CAS
PubMed
Article
Google Scholar
Miyashima S, Koi S, Hashimoto T, Nakajima K (2011) Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root. Development 138:2303–2313
CAS
PubMed
Article
Google Scholar
Moore-Gordon CS, Cowan AK, Bertling I, Botha CEJ, Cross RHM (1998) Symplastic solute transport and avocado fruit development: a decline in cytokinin/ABA ratio is related to appearance of the Hass small fruit variant. Plant Cell Physiol 39:1027–1038
CAS
Article
Google Scholar
Oparka K, Boevink P (2005) Techniques for imaging intercellular transport. In: Oparka KJ (ed) Plasmodesmata annual plant reviews, vol 18. Blackwell, Oxford, pp 241–262
Chapter
Google Scholar
Oparka KJ, Prior DAM (1992) Direct evidence for pressure-generated closure of plasmodesmata. Plant J 2:741–750
Article
Google Scholar
Oparka KJ, Roberts AG, Boevink P, Santa Cruz S, Roberts L, Pradel KS, Imlau A, Kotlizky G, Sauer N, Epel B (1999) Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97:743–754
CAS
PubMed
Article
Google Scholar
Overall RL, Liu DY, Barton DA (2013) Plasmodesmata: new perspectives on old questions. In: Sokolowska K, Pawel S (eds) Symplasmic transport in vascular plants. Springer, New York, pp 217–244
Chapter
Google Scholar
Palevitz BA, Hepler PK (1985) Changes in dye coupling of stomatal cells of allium and commelina demonstrated by microinjection of Lucifer yellow. Planta 164:473–479
CAS
PubMed
Article
Google Scholar
Pillitteri LJ, Torii KU (2012) Mechanisms of stomatal development. Ann Rev Plant Biol 63:591–614
CAS
Article
Google Scholar
Piršelová B, Mistríková V, Libantová J, Moravčíková J, Matušíková I (2012) Study on metal-triggered callose deposition in roots of maize and soybean. Biologia 67:698–705
Article
Google Scholar
Pressel S, Ligrone R, Duckett JG (2006) Effects of de-and rehydration on food-conducting cells in the moss Polytrichum formosum: a cytological study. Ann Bot 98:67–76
PubMed Central
PubMed
Article
Google Scholar
Pressel S, Ligrone R, Duckett JG (2008) Cellular differentiation in moss protonemata: a morphological and experimental study. Ann Bot 102:227–245
PubMed Central
PubMed
Article
Google Scholar
Radford JE, White RG (2011) Inhibitors of myosin, but not actin, alter transport through Tradescantia plasmodesmata. Protoplasma 248:205–216
CAS
PubMed
Article
Google Scholar
Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin IT, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69
CAS
PubMed
Article
Google Scholar
Rinne PLH, Kaikuranta PM, Van Der Schoot C (2001) The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J 26:249–264
CAS
PubMed
Article
Google Scholar
Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338
CAS
PubMed
Article
Google Scholar
Robards AW, Lucas WJ (1990) Plasmodesmata. Ann Rev Plant Physiol Plant Mol Biol 41:369–419
Article
Google Scholar
Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124
Article
Google Scholar
Ruan YL, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13:47–60
CAS
PubMed Central
PubMed
Google Scholar
Sakakibara K, Nishiyama T, Deguchi H, Hasebe M (2008) Class 1 KNOX genes are not involved in shoot development in the moss Physcomitrella patens but do function in sporophyte development. Evol Dev 10:555–566
CAS
PubMed
Article
Google Scholar
Salmon MS, Bayer EM (2012) Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics. Front Plant Sci 3
Schaefer DG, Zryd JP (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206
CAS
PubMed
Article
Google Scholar
Schlereth A, Möller B, Liu W, Kientz M, Flipse J, Rademacher EH, Schmid M, Jürgens G, Weijers D (2010) MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464:913–916
CAS
PubMed
Article
Google Scholar
Schnepf E, Reinhard C (1997) Brachycytes in Funaria protonemate: induction by abscisic acid and fine structure. J Plant Physiol 151:166–175
CAS
Article
Google Scholar
Schnepf E, Sawidis T (1991) Filament disruption in Funaria protonemata: occlusion of plasmodesmata. Bot Acta 104:98–102
Article
Google Scholar
Schuette S, Wood AJ, Geisler M, Geisler-Lee J, Ligrone R, Renzaglia KS (2009) Novel localization of callose in the spores of Physcomitrella patens and phylogenomics of the callose synthase gene family. Ann Bot 103:749–756
CAS
PubMed Central
PubMed
Article
Google Scholar
Schulz A (1995) Plasmodesmal widening accompanies the short-term increase in symplasmic phloem unloading in pea root-tips under osmotic-stress. Protoplasma 188:22–37
Article
Google Scholar
Tucker EB (1982) Translocation in the staminal hairs of Setcreasea purpurea. I. A study of cell ultrastructure and cell-to-cell passage of molecular probes. Protoplasma 113:193–201
CAS
Article
Google Scholar
Tucker EB (1988) Inositol bisphosphate and inositol trisphosphate inhibit cell-to-cell passage of carboxyfluorescein in staminal hairs of Setcreasea purpurea. Planta 174:358–363
CAS
PubMed
Article
Google Scholar
Tucker EB (1990) Calcium-loaded 1,2-bis(2-aminophenoxy)ethane-N, N, N’, N’-tetraacetic acid blocks cell-to-cell diffusion of carboxyfluorescein in staminal hairs of Setcreasea purpurea. Planta 182:34–38
CAS
PubMed
Article
Google Scholar
Tucker EB (1993) Azide treatment enhances cell-to-cell diffusion in staminal hairs of Setcreasea purpurea. Protoplasma 174:45–49
CAS
Article
Google Scholar
Tucker EB, Boss WF (1996) Mastoparan-induced intracellular Ca2+ fluxes may regulate cell-to-cell communication in plants. Plant Physiol 111:459–467
CAS
PubMed Central
PubMed
Google Scholar
Tucker EB, Tucker JE (1993) Cell-to-cell diffusion selectivity in staminal hairs of Setcreasea purpurea. Protoplasma 174:36–44
Article
Google Scholar
Tucker JE, Mauzerall D, Tucker EB (1989) Symplastic transport of carboxyfluorescein in staminal hairs of Setcreasea purpurea is diffusive and includes loss to the vacuole. Plant Physiol 90:1143–1147
CAS
PubMed Central
PubMed
Article
Google Scholar
Uenaka H, Wada M, Kadota A (2005) Four distinct photoreceptors contribute to light-induced side branch formation in the moss Physcomitrella patens. Planta 222:623–631
CAS
PubMed
Article
Google Scholar
van der Schoot C, Rinne PLH (2011) Dormancy cycling at the shoot apical meristem: transitioning between self-organization and self-arrest. Plant Sci 180:120–131
PubMed
Article
Google Scholar
Vatén A, Dettmer J, Wu S, Stierhof Y-D, Miyashima S, Yadav SR, Roberts CJ, Campilho A, Bulone V, Lichtenberger R (2011) Callose biosynthesis regulates symplastic trafficking during root development. Dev Cell 21:1144–1155
PubMed
Article
Google Scholar
Waigmann E, Zambryski P (2000) Trichome plasmodesmata: a model system for cell-to-cell movement. Adv Bot Res 31:261–283
Article
Google Scholar
Wang X, Sager R, Cui W, Zhang C, Lu H, Lee JY (2013) Salicylic acid regulates plasmodesmata closure during innate immune responses in Arabidopsis. Plant Cell 25:2315–2329
CAS
PubMed Central
PubMed
Article
Google Scholar
Wu S, Gallagher KL (2011) Mobile protein signals in plant development. Curr Opin Plant Biol 14:563–570
CAS
PubMed
Article
Google Scholar
Wu S, Gallagher KL (2012) Transcription factors on the move. Curr Opin Plant Biol 15:645–651
CAS
PubMed
Article
Google Scholar
Wu XL, Dinneny JR, Crawford KM, Rhee Y, Citovsky V, Zambryski PC, Weigel D (2003) Modes of intercellular transcription factor movement in the Arabidopsis apex. Development 130:3735–3745
CAS
PubMed
Article
Google Scholar
Wu S, Koizumi K, MacRae-Crerar A, Gallagher KL (2011) Assessing the utility of photoswitchable fluorescent proteins for tracking intercellular protein movement in the Arabidopsis root. PLoS One 6:e27536
CAS
PubMed Central
PubMed
Article
Google Scholar
Yadav SR, Yan D, Sevilem I, Helariutta Y (2014) Plasmodesmata-mediated intercellular signaling during plant growth and development. Front Plant Sci 5:44
PubMed Central
PubMed
Article
Google Scholar
Zavaliev R, Ueki S, Epel BL, Citovsky V (2011) Biology of callose (β-1,3-glucan) turnover at plasmodesmata. Protoplasma 248:117–130
CAS
PubMed
Article
Google Scholar
Zimmer AD, Lang D, Buchta K, Rombauts S, Nishiyama T, Hasebe M, Van de Peer Y, Rensing SA, Reski R (2013) Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Gen 14:498
CAS
Article
Google Scholar