Skip to main content
Log in

Taxonomic study of a new eustigmatophycean alga, Vacuoliviride crystalliferum gen. et sp. nov.

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

This study investigated the taxonomic affiliation of the algal strain nak-9, which has been reported to absorb radioactive cesium with high efficiency, using light and electron microscopy, and molecular phylogenetic analysis based on 18S ribosomal RNA gene (rDNA) sequences. This alga is spherical and coccoid, with a smooth cell wall, large vacuole, crystalline structure, reddish globule, and refractile granules (lamellate vesicles). The cells possess one to several greenish parietal chloroplasts with a bulging pyrenoid surrounded by lamellate vesicles. The chloroplasts include orderly thylakoid lamellae but no girdle lamella. Molecular phylogenetic analysis suggests that strain nak-9 is a member of the eustigmatophycean clade, which includes Goniochloris, Pseudostaurastrum, and Trachydiscus. On the basis of these results, we propose that strain nak-9 (NIES-2860) comprises a new species and new genus of the Eustigmatophyceae, Vacuoliviride crystalliferum gen. et sp. nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antia NJ, Bisalputra T, Cheng JY, Kalley JP (1975) Pigment and cytological evidence for reclassification of Nannochloris oculata and Monallantus salina in the Eustigmatophyceae. J Phycol 11:339–343

    Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process: Process Intensif 48:1146–1151

    Article  CAS  Google Scholar 

  • Dashiel C, Bailey J (2009) New observations on the biology of eustigmatophytes, with a description of Microtalis gen. nov. J Phycol 45(Suppl. 1):8

    Google Scholar 

  • Ettl H (1978) Xanthophyceae. 1. Teil. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa. Bd. 3/1. Gustav Fischer, Jena, pp 1–530

    Google Scholar 

  • Fawley KP, Eliáš M, Fawley MW (2014) The diversity and phylogeny of the commercially important algal class Eustigmatophyceae, including the new clade Goniochloridales. J Appl Phycol 26:1773–1782

    Article  CAS  Google Scholar 

  • Fukuda S, Iwamoto K, Atsumi M, Yokoyama A, Nakayama T, Ishida K, Inouye I, Shiraiwa Y (2014) Global searches for microalgae and aquatic plants that can eliminate radioactive cesium, iodine and strontium from the radio-polluted aquatic environment: a bioremediation strategy. J Plant Res 127:79–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    Article  CAS  PubMed  Google Scholar 

  • Hegewald E, Padisák J, Friedl T (2007) Pseudotetraëdriella kamillae: taxonomy and ecology of a new member of the algal class Eustigmatophyceae (Stramenopiles). Hydrobiologia 586:107–116

    Article  Google Scholar 

  • Hibberd DJ (1974) Observations on the cytology and ultrastructure of Chlorobotrys regularis (West) Bohlin with special reference to its position in the Eustigmatophyceae. Br Phycol J 9:37–46

    Article  Google Scholar 

  • Hibberd DJ (1981) Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Bot J Linn Soc 82:93–119

    Article  Google Scholar 

  • Hibberd DJ (1990) Eustigmatophyta. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of the Protoctista; the structure, cultivation, habits and life histories of the eukaryotic microorganisms and their descendants exclusive of animals, plants and fungi. Jones and Bartlett Publishers, Boston, pp 326–333

    Google Scholar 

  • Hibberd DJ, Leedale GF (1970) Eustigmatophyceae—a new algal class with unique organization of the motile cell. Nature 225:758–760

    Article  CAS  PubMed  Google Scholar 

  • Hibberd DJ, Leedale GF (1971) A new algal class—the Eustigmatophyceae. Taxon 20:523–525

    Article  Google Scholar 

  • Hibberd DJ, Leedale GF (1972) Observations on the cytology and ultrastructure of the new algal class, Eustigmatophyceae. Ann Bot 36:49–71

    Google Scholar 

  • Honda D, Inouye I (1995) Ultrastructure and reconstruction of the flagellar apparatus architecture in Ankylochrysis lutea (Chrysophyceae, Sarcinochrysidales). Phycologia 34:215–227

    Article  Google Scholar 

  • Karlson B, Potter D, Kuylenstierna M, Andersen RA (1996) Ultrastructure, pigment composition, and 18S rRNA gene sequence for Nannochloropsis granulata sp. nov. (Monodopsidaceae, Eustigmatophyceae), a marine ultraplankter isolated from the Skagerrak, northeast Atlantic Ocean. Phycologia 35:253–260

    Article  Google Scholar 

  • Kasai F, Kawachi M, Erata M, Mori F, Yumoto K, Sato M, Ishimoto M (2009) NIES-Collection List of Strains, 8th Edition. Jpn J Phycol (Sôrui) 57(Suppl):1–350

    Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Komarék J, Fott B (1983) Chlorophyceae (Grünalgen). Ordiniung: Chlorococcales. In: Huber-Pestalozzi G (ed) Das Phytoplankton des Süsswasers, Die Binnengewässer. 7/1. E. Schwiezerbart’sche Verlagsbuch, Stutgart, pp 1–1044

    Google Scholar 

  • Krienitz L, Hepperle D, Stich HB, Weiler W (2000) Nannochloropsis limnetica (Eustigmatophyceae), a new species of picoplankton from freshwater. Phycologia 39:219–227

    Article  Google Scholar 

  • Moazami N, Ashori A, Ranjbar R, Tangestani M, Eghtesadi R, Nejad AS (2012) Large-scale biodiesel production using microalgae biomass of Nannochloropsis. Biomass Bioenergy 39:449–453

    Article  CAS  Google Scholar 

  • Nakayama T, Marin B, Kranz HD, Surek B, Huss VAR, Inouye I, Melkonian M (1998) The basal position of scaly green flagellates among the green algae (Chlorophyta) is revealed by analyses of nuclear-encoded SSU rRNA sequences. Protist 149:367–380

    Article  CAS  PubMed  Google Scholar 

  • Neustupa J, Nĕmcová Y (2001) Morphological and taxonomic study for three terrestrial eustigmatophycean species. Nova Hedwigia 123:373–386

    Google Scholar 

  • Pascher A (1939) Heterokonten. In: Kolkwitz R (ed) Rabenhorst’s Kryptogamenflora von Deutschland, Österreich und der Schweiz, vol XI. Akademische Verlagsgesellschaft, Leipzig, pp 1–1092

    Google Scholar 

  • Preisig HR, Wilhelm C (1989) Ultrastructure, pigments and taxonomy of Botryochloropsis similis gen. et sp. nov (Eustigmatophyceae). Phycologia 28:61–69

    Article  Google Scholar 

  • Přibyl P, Eliáš M, Cepák V, Lukavský J, Kaštánek P (2012) Zoosporogenesis, morphology, ultrastructure, pigment composition, and phylogenetic position of Trachydiscus minutus (Eustigmatophyceae, Heterokontophyta). J Phycol 48:231–242

    Article  Google Scholar 

  • Prior SE, Fawley MW, Fawley KP (2010) DNA sequence analysis of freshwater Eustigmatophyceae, a potential source of essential fatty acids. J Ark Acad Sci 63:139–144

    Google Scholar 

  • Reynolds EC (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Řezanka T, Petránková M, Cepák V, Přibyl P, Sigler K, Cajthaml T (2010) Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid. Folia Microbiol 55:265–269

    Article  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed Central  PubMed  Google Scholar 

  • Santos LMA (1996) The Eustigmatophyceae: actual knowledge and research perspectives. Nova Hedwigia Beih 112:391–405

    Google Scholar 

  • Schnepf E, Niemann A, Wilhelm C (1996) Pseudostaurastrum limneticum, a eustigmatophycean alga with astigmatic zoospores: morphogenesis, fine structure, pigment composition and taxonomy. Arch Protistenkd 146:237–249

    Article  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suda S, Atsumi M, Miyashita H (2002) Taxonomic characterization of a marine Nannochloropsis species, N. oceanica sp. nov. (Eustigmatophyceae). Phycologia 41:273–279

    Article  Google Scholar 

  • Van Wagenen J, Miller TW, Hobbs S, Hook P, Crowe B, Huesemann M (2012) Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies 5:731–740

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Yoshihiro Shiraiwa and Dr. Koji Iwamoto (Faculty of Life and Environmental Sciences, University of Tsukuba) for their valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Nakayama.

Additional information

T. Nakayama and A. Nakamura have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakayama, T., Nakamura, A., Yokoyama, A. et al. Taxonomic study of a new eustigmatophycean alga, Vacuoliviride crystalliferum gen. et sp. nov.. J Plant Res 128, 249–257 (2015). https://doi.org/10.1007/s10265-014-0686-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-014-0686-3

Keywords

Navigation