Skip to main content

Genetic structure of Sakhalin spruce (Picea glehnii) in northern Japan and adjacent regions revealed by nuclear microsatellites and mitochondrial gene sequences

Abstract

The genetic structure of Sakhalin spruce (Picea glehnii) was studied across the natural range of the species, including two small isolated populations in south Sakhalin and Hayachine, by using six microsatellite loci and maternally inherited mitochondrial gene sequences. We also analyzed P. jezoensis, a sympatric spruce in the range. Genetic diversity of P. glehnii was higher in central Hokkaido and the lowest in the Hayachine. Bayesian clustering and principal coordinate analysis by using the microsatellites indicated that the Hayachine was clearly distinct from other populations, implying that it had undergone strong genetic drift since the last glacial period. P. glehnii harbored four mitochondrial haplotypes, two of which were shared with P. jezoensis. One of the two was observed without geographical concentration, suggesting its derivation from ancestral polymorphism. Another was observed in south Sakhalin and in P. jezoensis across Sakhalin. The Bayesian clustering—by using four microsatellite loci, including P. jezoensis populations—indicated unambiguous species delimitation, but with possible admixture of P. jezoensis genes into P. glehnii in south Sakhalin, where P. glehnii is abundantly overwhelmed by P. jezoensis; this might explain the occurrence of introgression of the haplotype of P. jezoensis into P. glehnii.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aizawa M, Yoshimaru H, Saito H, Katsuki T, Kawahara T, Kitamura K, Shi F, Kaji M (2007) Phylogeography of a northeast Asian spruce, Picea jezoensis, inferred from genetic variation observed in organelle DNA markers. Mol Ecol 16:3393–3405

    CAS  PubMed  Article  Google Scholar 

  • Aizawa M, Yoshimaru H, Katsuki T, Kaji M (2008) Imprint of post-glacial history in a narrowly distributed endemic spruce, Picea alcoquiana, in central Japan observed in nuclear microsatellites and organelle DNA markers. J Biogeogr 35:1295–1307

    Article  Google Scholar 

  • Aizawa M, Yoshimaru H, Saito H, Katsuki T, Kawahara T, Kitamura K, Shi F, Sabirov R, Kaji M (2009) Range-wide genetic structure in a north-east Asian spruce (Picea jezoensis) determined using nuclear microsatellite markers. J Biogeogr 36:996–1007

    Article  Google Scholar 

  • Aleksić JM, Geburek T (2014) Quaternary population dynamics of an endemic conifer, Picea omorika, and their conservation implications. Conserv Genet 15:87–107

    Article  Google Scholar 

  • Bennuah S, Wang T, Aitken S (2004) Genetic analysis of the Picea sitchensis x glauca introgression zone in British Columbia. For Ecol Manag 197:65–77

    Article  Google Scholar 

  • Blair C, Murphy RW (2011) Recent trends in molecular phylogenetic analysis: where to next? J Hered 102:130–138

    PubMed  Article  Google Scholar 

  • Bodare S, Stocks M, Yang J-C, Lascoux M (2013) Origin and demographic history of the endemic Taiwan spruce (Picea morrisonicola). Ecol Evol 3:3320–3333

    PubMed Central  PubMed  Google Scholar 

  • Bouillé M, Senneville S, Bousquet J (2011) Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea. Tree Genet Genomes 3:469–484

    Article  Google Scholar 

  • Burban C, Petit RJ (2003) Phylogeography of maritime pine inferred with organelle markers having contrasted inheritance. Mol Ecol 12:1487–1495

    CAS  PubMed  Article  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    CAS  PubMed  Article  Google Scholar 

  • Comes HP, Kadereit JW (1998) The effect of Quaternary climatic changes on plant distribution and evolution. Trend Plant Sci 3:432–438

    Article  Google Scholar 

  • Currat M, Ruedi M, Petit RJ, Excoffier L (2008) The hidden side of invasions: massive introgression by local genes. Evolution 62:1908–1920

    PubMed  Google Scholar 

  • Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131

    CAS  PubMed  Article  Google Scholar 

  • Du FK, Petit RJ, Liu JQ (2009) More introgression with less gene flow: chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other conifers. Mol Ecol 18:1396–1407

    CAS  PubMed  Article  Google Scholar 

  • Du FK, Peng XL, Liu JQ, Lascoux M, Hu FS, Petit RJ (2011) Direction and extent of organelle DNA introgression between two spruce species in the Qinghai-Tibetan Plateau. New Phytol 192:1024–1033

    CAS  PubMed  Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree (Argania spinosa L. Skeels) endemic to Morocco. Theor Appl Genet 92:832–839

    PubMed  Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  Article  Google Scholar 

  • Farjon A (1990) Pinaceae: drawings and descriptions of the genera Abies, Cedrus, Pseudolarix, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga. Köeltz Scientific Books, Königstein

    Google Scholar 

  • Frankam R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Godbout J, Beaulieu J, Bousquet J (2010) Phylogeographic structure of jack pine (Pinus banksiana; Pinaceae) supports the existence of a coastal glacial refugium in northeastern North America. Am J Bot 97:1903–1912

    CAS  PubMed  Article  Google Scholar 

  • Godbout J, Yeh FC, Bousquet J (2012) Large-scale asymmetric introgression of cytoplasmic DNA reveals Holocene range displacement in a North American boreal pine complex. Ecol Evol 2:1853–1866

    PubMed Central  PubMed  Article  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available online at: http://www2.unil.ch/popgen/softwares/fstat.htm

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hamaya T, Watanabe S, Kaji M, Kurahashi A, Sakai C, Ogasawara S (1989) Morphological and habitual characteristics of natural hybrids between Saghalien spruce (Picea glehnii) and Yezo spruce (Picea jezoensis). Bull Tokyo Univ Forest 81:53–68 (in Japanese with English summary)

    Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 25:1633–1638

    Article  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    CAS  PubMed  Article  Google Scholar 

  • Hodgetts RB, Aleksiuk MA, Brown A, Clarke C, Macdonald E, Nadeem S, Khasa D (2001) Development of microsatellite markers for white spruce (Picea glauca) and related species. Theor Appl Genet 102:1252–1258

    CAS  Article  Google Scholar 

  • Hubisz MJ, Fakush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    PubMed Central  PubMed  Article  Google Scholar 

  • Igarashi Y, Kumano S (1981) Vegetational changes during the last glacial age in Hokkaido. Quat Res 20:129–141 (in Japanese with English summary)

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    CAS  PubMed  Article  Google Scholar 

  • Jaramillo-Correa JP, Beaulieu J, Ledig FT, Bousquet J (2006) Decoupled mitochondrial and chloroplast DNA population structure reveals Holocene collapse and population isolation in a threatened Mexican-endemic conifer. Mol Ecol 15:2787–2800

    CAS  PubMed  Article  Google Scholar 

  • Kalinowski ST (2005) HP-Rare: a computer program for performing rarefaction on measures of allelic diversity. Mol Ecol Notes 5:187–189

    CAS  Article  Google Scholar 

  • Katsuki T, Shimada K, Yoshimaru H (2011) Process to extinction and genetic structure of a threatened Japanese conifer species, Picea koyamae. J For Res 16:292–301

    Article  Google Scholar 

  • Kelchner SA (2000) The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann Missouri Bot Grand 87:482–498

    Article  Google Scholar 

  • Kobayashi K, Yoshikawa J, Suzuki M (2000) DNA identification of Picea species of the last glacial ate in northern Japan. Jpn J Hist Bot 8:67–80

    Google Scholar 

  • Lascoux M, Palmé AE, Cheddadi R, Latta RG (2004) Impact of ice ages on the genetic structure of trees and shrubs. Philos Trans R Soc Lond B 359:197–207

    Article  Google Scholar 

  • Lockwood JD, Aleksić JM, Zou J, Wang J, Liu J, Renner SS (2013) A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences. Mol Phylogenet Evol 69:717–727

    PubMed  Article  Google Scholar 

  • Matsumoto A, Uchida K, Taguchi Y, Tani N, Tsumura Y (2010) Genetic diversity and structure of natural fragmented Chamaecyparis obtusa populations as revealed by microsatellite markers. J Plant Res 123:689–699

    PubMed  Article  Google Scholar 

  • Meloni M, Perini D, Binelli G (2007) The distribution of genetic variation in Norway spruce (Picea abies Karst.) populations in the western Alps. J Biogeogr 34:929–938

    Article  Google Scholar 

  • Meng L, Yang R, Abbott RJ, Miehe G, Hu T, Liu J (2007) Mitochondrial and chloroplast phylogeography of Picea crassifolia Kom. (Pinaceae) in the Qinghai-Tibetan Plateau and adjacent highlands. Mol Ecol 16:4128–4137

    CAS  PubMed  Article  Google Scholar 

  • Minato M, Fujiwara Y, Kumano S, Igarashi Y (1972) The Hatchashinai gravel formation. J Fac Sci Hokkaido Univ Ser 4 Geology and mineralogy 15:605–615

  • Müller K (2006) Incorporating information from length-mutational events into phylogenetic analysis. Mol Phylogent Evol 38:667–676

    Article  Google Scholar 

  • Muñoz-Pajares AJ (2013) SIDIER: substitution and indel distances to infer evolutionary relationships. Methods Ecol Evol 4:1195–1200

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nei M, Chesser R (1983) Estimation of fixation indices and gene diversities. Ann Hum Genet 47:253–259

    CAS  PubMed  Article  Google Scholar 

  • Ohshima K (1990) The history of straits around the Japanese islands in the Late-Quaternary. Quat Res 29:193–208 (in Japanese with English summary)

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539. Available on line: http://bioinformatics.oxfordjournals.org/content/28/19/2537

  • Perron M, Bousquet J (1997) Natural hybridization between black and red spruce. Mol Ecol 6:725–734

    Article  Google Scholar 

  • Petit RJ, Excoffier L (2009) Gene flow and species delimitation. Trend Ecol Evol 24:386–393

    Article  Google Scholar 

  • Pfeiffer A, Olivieri AM, Morgante M (1997) Identification and characterization of microsatellites in Norway spruce (Picea abies K.). Genome 40:411–419

    CAS  PubMed  Article  Google Scholar 

  • Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered vs. unordered alleles. Genetics 144:1237–1245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pritchard JK, Wen W, Falush D (2010). Documentation for the STRUCTURE software Version 2.3 (available on line: http://pritchardlab.stanford.edu/structure_software/release_versions/v2.3.4/structure_doc.pdf)

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Sasaki C, Kurahashi A, Hamaya T (1982) Natural hybrid between Picea glehnii and P. jezoensis. In: 31st Proceedings of Hokkaido Branch Japan Forest Society, pp 106–109 (in Japanese)

  • Senjo M, Kimura K, Watano Y, Ueda K, Shimizu T (1999) Extensive mitochondrial introgression from Pinus pumila to P. parviflora var. pentaphylla (Pinaceae). J Plant Res 112:97–105

    CAS  Article  Google Scholar 

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381

    CAS  PubMed  Article  Google Scholar 

  • Simmons MP, Ochoterena H, Carr TG (2001) Incorporation, relative homoplasy, and effect of gap characters in sequence-based phylogenetic analyses. Syst Biol 50:454–462

    CAS  PubMed  Article  Google Scholar 

  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573

    PubMed  Article  Google Scholar 

  • Sperisen C, Büchler U, Gugerli F, Mátyás G, Geburek T, Vendramin GG (2001) Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce. Mol Ecol 10:257–263

    CAS  PubMed  Article  Google Scholar 

  • Suzuki K (1991) Picea cone-fossils from Pleistocene strata of northeast Japan. Saito Ho-on Kai Mus Nat Histor Res Bull 59:1–41

    Google Scholar 

  • Suzuki K, Sohma K (1965) The late Pleistocene stratigraphy and palaeobotany of the Koriyama Basin. Sci Rep Tohoku Univ Ser IV (Biol) 31:217–242

    Google Scholar 

  • Takahashi H (2004) Distribution patterns of gymnosperms in Sakhalin and a comparison with those in the Kurils: newly proposed S-K index. Bull Hokkaido Univ Mus 2:3–13

    Google Scholar 

  • Takahashi T, Tani N, Taira H, Tsumura Y (2005) Microsatellite markers reveal high variation in natural populations of Cryptomeria japonica near refugial areas of the last glacial period. J Plant Res 118:83–90

    CAS  PubMed  Article  Google Scholar 

  • Tatewaki M, Yamanaka T (1938) Northern limit of Picea glehnii. Hokkaido Ringyo Kaiho 36(11):1–9 (in Japanese)

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Tollefsrud MM, Kissling R, Gugerli F, Johnsen Ø, Skrøppa T, Cheddadi R, van der Knaap WO, Latałowa M, Terhürne-Berson R, Litt T, Geburek T, Brochmann C, Sperisen C (2008) Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Mol Ecol 17:4134–4150

    CAS  PubMed  Article  Google Scholar 

  • Tsuda Y, Ide Y (2005) Wide-range analysis of genetic structure of Betula maximowicziana, a long-lived pioneer tree species and noble hardwood in the cool temperate zone in Japan. Mol Ecol 14:3929–3941

    CAS  PubMed  Article  Google Scholar 

  • Tsukada M (1983) Late-Quaternary spruce decline and rise in Japan and Sakhalin. Bot Mag Tokyo 96:127–133

    Article  Google Scholar 

  • Wang ZM, Nagasaka K (1997) Allozyme variation in natural populations of Picea glehnii in Hokkaido, Japan. Heredity 78:470–475

    Article  Google Scholar 

  • Wang Y, Korpelainen H, Li C (2006) Microsatellite polymorphism in the edaphic spruce, Picea asperata, originating from the mountains of China. Silva Fennica 40:561–575

    Article  Google Scholar 

  • Yano M (1984) Cone remains of Picea from the middle Pleistocene deposits in the Kuromatsunai depression. Ann Rep Hist Mus Hokkaido 6:13–20 (in Japanese with English summary)

    Google Scholar 

  • Yano M (1987) Paleovegetation in Hokkaido. In: Ito K (ed) vegetation in Hokkaido. Hokkaido University Press, Sapporo (in Japanese)

    Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trend Ecol Evol 11:413–418

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Y. Tsumura, Y. Taguchi, and Y. Kawamata (Department of Forest Genetics, Forestry, and Forest Products Research Institute) for their technical help with the experiment, and thank the editors and two anonymous reviewers for their valuable comments and suggestions. We also thank the regional offices of the Forestry Agency, Japan, and prefectural offices for permitting sampling. This study was financially supported by a Grant-in-Aid for Scientific Research (#19780111 and #21780141) from the Ministry of Education, Culture, Sports, Science, and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mineaki Aizawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 46 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aizawa, M., Yoshimaru, H., Takahashi, M. et al. Genetic structure of Sakhalin spruce (Picea glehnii) in northern Japan and adjacent regions revealed by nuclear microsatellites and mitochondrial gene sequences. J Plant Res 128, 91–102 (2015). https://doi.org/10.1007/s10265-014-0682-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-014-0682-7

Keywords

  • Genetic diversity
  • Introgression
  • Mitochondrial DNA
  • Picea jezoensis
  • SSR
  • Genetic drift