Skip to main content

Evaluation of the possibility to use the plant–microbe interaction to stimulate radioactive 137Cs accumulation by plants in a contaminated farm field in Fukushima, Japan

Abstract

Field experiments in a contaminated farmland in Nihonmatsu city, Fukushima were conducted to assess the effectiveness of the plant–microbe interaction on removal of radiocesium. Before plowing, 93.3 % of radiocesium was found in the top 5 cm layer (5,718 Bq kg DW−1). After plowing, Cs radioactivity in the 0–15 cm layer ranged from 2,037 to 3,277 Bq kg DW−1. Based on sequential extraction, the percentage of available radiocesium (water soluble + exchangeable) was fewer than 10 % of the total radioactive Cs. The transfer of 137Cs was investigated in three agricultural crops; komatsuna (four cultivars), Indian mustard and buckwheat, inoculated with a Bacillus or an Azospirillum strains. Except for komatsuna Nikko and Indian mustard, inoculation with both strains resulted in an increase of biomass production by the tested plants. The highest 137Cs radioactivity concentration in above-ground parts was found in Bacillus-inoculated komatsuna Nikko (121 Bq kg DW−1), accompanied with the highest 137Cs TF (0.092). Furthermore, komatsuna Nikko-Bacillus and Indian mustard-Azospirillum associations gave the highest 137Cs removal, 131.5 and 113.8 Bq m−2, respectively. Despite the beneficial effect of inoculation, concentrations of 137Cs and its transfer to the tested plants were not very high; consequently, removal of 137Cs from soil would be very slow.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Askbrant S, Melin J, Sandalls J, Rauret G, Vallejo R, Hinton T, Cremers A, Vandecastelle C, Lewyckyj N, Ivanov YA, Firsakova SK, Arkhipov NP, Alexakhin RM (1996) Mobility of radionuclides in undisturbed and cultivated soils in Ukraine, Belarus and Russia six years after the Chernobyl fallout. J Environ Radioact 31:287–312. doi:10.1016/0265-931X(95)00054-E

    CAS  Article  Google Scholar 

  • Bunzl K, Schimmack W, Belli M, Riccardi M (1997) Sequential extraction of fallout radiocesium from the soil: small scale and large scale spatial variability. J Radioanal Nucl Chem 226:47–53

    CAS  Article  Google Scholar 

  • Camps M, Rigol A, Hillier S, Vidal M, Rauret G (2004) Quantitative assessment of the effects of agricultural practices designed to reduce 137Cs and 90Sr soil-plant transfer in meadows. Sci Total Environ 332:23–38. doi:10.1016/j.scitotenv.2004.04.008

    CAS  PubMed  Article  Google Scholar 

  • Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H (2011) Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Dai-ichi Nuclear Power Plant into the atmosphere. J Nucl Sci Technol 48:1129–1134

    CAS  Article  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants—with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513. doi:10.1016/j.micres.2008.08.007

    CAS  PubMed  Article  Google Scholar 

  • Cook LL, Inouye RS, McGonigle TP, White GJ (2007) The distribution of stable cesium in soils and plants of the eastern Snake River Plain in southern Idaho. J Arid Environ 69:40–64. doi:10.1016/j.jaridenv.2006.08.014

    Article  Google Scholar 

  • Cook LL, Inouye RS, McGonigle TP (2009) Evaluation of four grasses for use in phytoremediation of Cs-contaminated arid land soil. Plant Soil 324:169–184. doi:10.1007/s11104-009-9942-z

    CAS  Article  Google Scholar 

  • Cremers A, Elsen A, De Preter P, Maes A (1988) Quantitative analysis of radiocaesium retention in soils. Nature 335:247–249

    CAS  Article  Google Scholar 

  • De Boulois H, Voets L, Delvaux B, Jakobsen I, Declerck S (2006) Transport of radiocaesium by arbuscular mycorrhizal fungi to Medicago truncatula under in vitro conditions. Environ Microbiol 8:1926–1934. doi:10.1111/j.1462-2920.2006.01070.x

    PubMed  Article  Google Scholar 

  • Djedidi S, Kojima K, Yamaya H, Ohkama-Ohtsu N, Bellingrath-Kimura SD, Watanabe I, Yokoyama T (2014) Stable cesium uptake and accumulation capacities of five plant species as influenced by bacterial inoculation and cesium distribution in the soil. J Plant Res 127:585–597. doi:10.1007/s10265-014-0647-x

    CAS  PubMed  Article  Google Scholar 

  • Dushenkov S, Mikheev A, Prokhnevsky A, Ruchko M, Sorochinsky B (1999) Phytoremediation of radiocesium-contaminated soil in the vicinity of Chernobyl, Ukraine. Environ Sci Technol 33:469–475

    CAS  Article  Google Scholar 

  • Endo S, Kimura S, Takatsuji T, Nanasawa K, Imanaka T, Shizuma K (2012) Measurement of soil contamination by radionuclides due to Fukushima Dai-ichi Nuclear Power Plant accident and associated cumulative external dose estimation. J Environ Radioact 111:18–27. doi:10.1016/j.jenvrad.2011.11.006

    CAS  PubMed  Article  Google Scholar 

  • Endo S, Kajimoto T, Shizuma K (2013) Paddy-field contamination with 134Cs and 137Cs due to Fukushima Dai-ichi Nuclear Power Plant accident and soil-to-rice transfer coefficients. J Environ Radioact 116:59–64. doi:10.1016/j.jenvrad.2012.08.018

    CAS  PubMed  Article  Google Scholar 

  • Entry JA, Watrud LS, Reeves M (1999) Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi. Environ Pollut 104:449–457. doi:10.1016/S0269-7491(98)00163-8

    CAS  Article  Google Scholar 

  • Forsberg S, Strandmark M (2001) Migration and chemical availability of 137Cs and 90Sr in Swedish long-term experimental pastures. Water Air Soil Poll 127:157–171

    CAS  Article  Google Scholar 

  • Fuhrmann M, Lasat M, Ebbs S, Cornish J, Kochian L (2003) Uptake and release of cesium-137 by five plant species as influenced by soil amendments in field experiments. J Environ Qual 32:2272–2279

    CAS  PubMed  Article  Google Scholar 

  • Gaspar L, Navas A (2013) Vertical and lateral distributions of 137Cs in cultivated and uncultivated soils on Mediterranean hillslopes. Geoderma 207–208:131–143. doi:10.1016/j.geoderma.2013.04.034

    Article  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Article  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412. doi:10.1016/j.soilbio.2004.08.030

    CAS  Article  Google Scholar 

  • Hamada N, Ogino H (2012) Food safety regulations: what we learned from the Fukushima nuclear accident. J Environ Radioact 111:83–99. doi:10.1016/j.jenvrad.2011.08.008

    CAS  PubMed  Article  Google Scholar 

  • Hurek T, Reinhold-Hurek B (2003) Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. J Biotechnol 106:169–178. doi:10.1016/j.jbiotec.2003.07.010

    CAS  PubMed  Article  Google Scholar 

  • Ishikawa NA, Tagami k, Uchida S (2008) Estimation of 137Cs plant root uptake using naturally existing 133Cs. J Nucl Sci Technol Supplement 6:146–151

    Article  Google Scholar 

  • Koarashi J, Atarashi-Andoh M, Matsunaga T, Sato T, Nagao S, Nagai H (2012) Factors affecting vertical distribution of Fukushima accident-derived radiocesium in soil under different land-use conditions. Sci Total Environ 431:392–401. doi:10.1016/j.scitotenv.2012.05.041

    CAS  PubMed  Article  Google Scholar 

  • Kobayashi D, Okouchi T, Yamagami M, Shinano T (2014) Verification of radiocesium decontamination from farmlands by plants in Fukushima. J Plant Res 127:51–56. doi:10.1007/s10265-013-0607-x

    CAS  PubMed  Article  Google Scholar 

  • Kuwahara C, Fukumoto A, Ohsone A, Furuya N, Shibata H, Sugiyama H, Kato F (2005) Accumulation of radiocesium in wild mushrooms collected from a Japanese forest and cesium uptake by microorganisms isolated from the mushroom-growing soils. Sci Total Environ 345:165–173. doi:10.1016/j.scitotenv.2004.10.022

    CAS  PubMed  Article  Google Scholar 

  • Kuwahara C, Fukumoto A, Nishina M, Sugiyama H, Anzai Y, Kato F (2011) Characteristics of cesium accumulation in the filamentous soil bacterium Streptomyces sp. K202. J Environ Radioact 102:138–144. doi:10.1016/j.jenvrad.2010.11.004

    CAS  PubMed  Article  Google Scholar 

  • Livens FR, Baxter MS (1988) Particle size and radionuclide levels in some west Cumbrian soils. Sci Total Environ 70:l–17. doi:10.1016/0048-9697(88)90248-3

    Article  Google Scholar 

  • Luksiene B, Marciulioniene D, Gudeliene I, Schönhofer F (2013) Accumulation and transfer of 137Cs and 90Sr in the plants of the forest ecosystem near the Ignalina nuclear power plant. J Environ Radioact 116:1–9. doi:10.1016/j.jenvrad.2012.09.005

    CAS  PubMed  Article  Google Scholar 

  • Matsunaga T, Koarashi J, Atarashi-Andoh M, Nagao S, Sato T, Nagai H (2013) Comparison of the vertical distributions of Fukushima nuclear accident radiocesium in soil before and after the first rainy season, with physicochemical and mineralogical interpretations. Sci Total Environ 447:301–314. doi:10.1016/j.scitotenv.2012.12.087

    CAS  PubMed  Article  Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282. doi:10.1016/S0958-1669(03)00060-0

    CAS  PubMed  Article  Google Scholar 

  • Mimura T, Mimura M, Kobayashi D, Komiyama C, Sekimoto H, Miyamoto M, Kitamura A (2014) Radioactive pollution and accumulation of radionuclides in wild plants in Fukushima. J Plant Res 127:5–10. doi:10.1007/s10265-013-0599-6

    CAS  PubMed  Article  Google Scholar 

  • Ministry of Agriculture, Forestry and Fisheries (MAFF) of Japan (2013). http://www.maff.go.jp/mobile/kinkyu/tohoku_saigai/08/2011/1109/110914/110914_gijutu_betu01.html and http://www.s.affrc.go.jp/docs/press/pdf/110914-09.pdf. In Japanese

  • Morino Y, Ohara T, Nishizawa M (2011) Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Dai-ichi Nuclear Power Plant in March 2011. Geophys Res Lett 38:L00G11. doi:10.1029/2011GL048689

    Article  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2013) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotech Adv 32:429–448. doi:10.1016/j.biotechadv.2013.12.005

    Article  Google Scholar 

  • Nakamaru Y, Uchida S (2008) Distribution coefficients of tin in Japanese agricultural soils and the factors affecting tin sorption behavior. J Environ Radioact 99:1003–1010. doi:10.1016/j.jenvrad.2007.11.012

    CAS  PubMed  Article  Google Scholar 

  • Nakano M, Yong RN (2013) Overview of rehabilitation schemes for farmlands contaminated with radioactive cesium released from Fukushima power plant. Eng Geol 155:87–93. doi:10.1016/j.enggeo.2012.12.010

    Article  Google Scholar 

  • Ohmori Y, Inui Y, Kajikawa M et al (2014) Difference in cesium accumulation among rice cultivars grown in the paddy field in Fukushima Prefecture in 2011 and 2012. J Plant Res 127:57–66. doi:10.1007/s10265-013-0616-9

    CAS  PubMed  Article  Google Scholar 

  • Ohno T, Muramatsu Y, Miura Y, Oda K, Inagawa N et al (2012) Depth profiles of radioactive cesium and iodine released from the Fukushima Dai-ichi Nuclear Power Plant in different agricultural fields and forests. Geochem J 46:287–295. doi:10.2343/geochemj.2.0204

    CAS  Article  Google Scholar 

  • Puhakainen M, Riekkinen I, Heikkinen T, Jaakkola T, Steinnes E, Rissanen K, Suomela M, Thørring H (2001) Effect of chemical pollution on forms of 137Cs, 90Sr and 239,240Pu in Arctic soil studied by sequential extraction. J Environ Radioact 52:17–29

    CAS  PubMed  Article  Google Scholar 

  • Rigol A, Roig M, Vidal M, Rauret G (1999) Sequential extractions for the study of radiocesium and radiostrontium dynamics in mineral and organic soils from western Europe and Chernobyl area. Environ Sci Tech 33:887–895

    CAS  Article  Google Scholar 

  • Rogers RD, Williams SE (1986) Vesicular arbuscular mycorrhizal—influence on plant uptake of cesium and cobalt. Soil Biol Biochem 18:371–376

    CAS  Article  Google Scholar 

  • Sakai M, Gomi T, Nunokawa M, Wakahara T, Onda Y (2014) Soil removal as a decontamination practice and radiocesium accumulation in tadpoles in rice paddies at Fukushima. Environ Pollut 187:112–115. doi:10.1016/j.envpol.2014.01.002

    CAS  PubMed  Article  Google Scholar 

  • Schmidt CS, Alavi M, Cardinale M, Müller H, Berg G (2012) Stenotrophomonas rhizophila DSM14405T promotes plant growth probably by altering fungal communities in the rhizosphere. Biol Fertil Soils 48:947–960. doi:10.1007/s00374-012-0688-z

    Article  Google Scholar 

  • Smolders E, Tsukada H (2011) The transfer of radiocesium from soil to plants: mechanisms, data, and perspectives for potential countermeasures in Japan. Integrat Environ Assess Manag 7:379–381

    CAS  Article  Google Scholar 

  • Spezzano P (2005) Distribution of pre- and post-Chernobyl radiocaesium with particle size fractions of soils. J Environ Radioact 83:117–127. doi:10.1016/j.jenvrad.2005.02.002

    CAS  PubMed  Article  Google Scholar 

  • Tanaka K, Iwatani H, Sakaguchi A, Takahashi Y, Onda Y (2013) Local distribution of radioactivity in tree leaves contaminated by fallout of the radionuclides emitted from the Fukushima Daiichi Nuclear Power Plant. J Radioanal Nucl Chem 295:2007–2014

    CAS  Article  Google Scholar 

  • Tang S, Liao S, Guo J, Song Z, Wang R, Zhou X (2011) Growth and cesium uptake responses of Phytolacca americana Linn. and Amaranthus cruentus L. grown on cesium contaminated soil to elevated CO2 or inoculation with a plant growth promoting rhizobacterium Burkholderia sp. D54, or in combination. J Hazard Mater 198:188–197. doi:10.1016/j.jhazmat.2011.10.029

    CAS  PubMed  Article  Google Scholar 

  • Tomioka N, Uchiyama H, Yagi O (1992) Isolation and characterization of cesium accumulating bacteria. Appl Environ Microbiol 58:1019–1023

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tripathi AK, Nagarajan T, Verma SC, Le Rudulier D (2002) Inhibition of biosynthesis and activity of nitrogenase in Azospirillum brasilense Sp7 under salinity stress. Curr Microbiol 44:363–367. doi:10.1007/s00284-001-0022

    CAS  PubMed  Article  Google Scholar 

  • Tsukada H, Hasegawa H, Hisamatsu S, Yamasaki S (2002) Transfer of 137Cs and stable Cs from paddy soil to polished rice in Aomori Japan. J Environ Radioact 59(3):351–363. doi:10.1016/S0265-931X(01)00083-2

    CAS  Article  Google Scholar 

  • Tsukada H, Takeda A, Hisamatsu S, Inaba J (2008) Concentration and specific activity of fallout 137Cs in extracted and particle-size fractions of cultivated soils. J Environ Radioact 99:875–881. doi:10.1016/j.jenvrad.2007.11.014

    CAS  PubMed  Article  Google Scholar 

  • Vandebroek L, Van Hees M, Delvaux B, Spaargaren O, Thiry Y (2009) Acid extraction as a predictive tool of radiocaesium interception potential (RIP) in a worldwide scale. Radioprotection 44:635–638

    Article  Google Scholar 

  • Vandenhove H (2013) Phytoremediation options for radioactively contaminated sites evaluated. Ann Nucl Energy 62:596–606. doi:10.1016/j.anucene.2013.02.005

    CAS  Article  Google Scholar 

  • Vandenhove H, Sweeck L (2011) Soil vulnerability for cesium transfer. Integr Environ Assess Manag 7:374–378

    CAS  PubMed  Article  Google Scholar 

  • Varskog P, Naeumann R, Steinnes E (1994) Mobility and plant availability of radioactive Cs in natural soil in relation to stable Cs, other alkali elements and soil fertility. J Environ Radioact 22:43–53. doi:10.1016/0265-931X(94)90034-5

    Article  Google Scholar 

  • Vinichuk M, Mårtensson A, Ericsson T, Rosén K (2013) Effect of arbuscular mycorrhizal (AM) fungi on 137Cs uptake by plants grown on different soils. J Environ Radioact 115:151–156. doi:10.1016/j.jenvrad.2012.08.004

    CAS  PubMed  Article  Google Scholar 

  • Wensling LA, Harsh JB, Ward TE, Palmer CD, Hamilton MA, Boyle JS, Flury M (2005) Cesium desorption from illite as affected by exudates from rhizosphere bacteria. Environ Sci Technol 39:4505–4512

    Article  Google Scholar 

  • Willey NJ, Martin MH (1995) Annual patterns of Cs-133 concentration in British upland vegetation. Chemosphere 30:717–724. doi:10.1016/0045-6535(94)00437-Y

    CAS  Article  Google Scholar 

  • Yoshihara T, Matsumura H, Hashida S, Nagaoka T (2013) Radiocesium contaminations of 20 wood species and the corresponding gamma-ray dose rates around the canopies at 5 months after the Fukushima nuclear power plant accident. J Environ Radioact 115:60–68. doi:10.1016/j.jenvrad.2012.07.002

    CAS  PubMed  Article  Google Scholar 

  • Zhu YG, Smolders E (2000) Plant uptake of radiocesium: a review of mechanisms, regulation and application. J Exp Bot 51:1635–1645

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Special Research Fund of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan titled “Research and development of security and safe crop production to reconstruct agricultural lands in Fukushima Prefecture based on novel techniques to remove radioactive compounds using advanced bio-fertilizer and plant protection strategies”. This work was also supported by a Grant-in-Aid for Scientific Research (B):24380176 from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Yokoyama.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Djedidi, S., Terasaki, A., Aung, H.P. et al. Evaluation of the possibility to use the plant–microbe interaction to stimulate radioactive 137Cs accumulation by plants in a contaminated farm field in Fukushima, Japan. J Plant Res 128, 147–159 (2015). https://doi.org/10.1007/s10265-014-0678-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-014-0678-3

Keywords

  • Radiocesium contamination
  • PGPR
  • Plant uptake
  • Transfer of radiocesium
  • Removal of radiocesium