Skip to main content

Autonomous self-pollination and insect visitors in partially and fully mycoheterotrophic species of Cymbidium (Orchidaceae)

Abstract

Few studies have examined the reproductive ecology of mycoheterotrophic plants, but the existing literature hypothesizes that they adopt a self-pollinating strategy. Although growing evidence indicates that some rewarding mycoheterotrophic plants depend (at least partially) on an insect-mediated pollination system, it remains unclear whether some mycoheterotrophic plants can attract pollinators without nectar or other rewards. Moreover, in a broader evolutionary/ecological context, the question of whether the evolution of mycoheterotrophy induces a shift in pollination pattern is still unknown. Here I present a comparative investigation into the breeding system of two fully mycoheterotrophic orchids, Cymbidium macrorhizon and C. aberrans, and their closest extant relative, the mixotrophic C. lancifolium. Pollination experiments were conducted to determine the breeding system of these plants. In addition, flower visitors that might contribute to pollination were recorded. Flowers at different maturity stages were examined to investigate mechanisms enabling or limiting self-fertilization. While nectarless flowers of C. lancifolium and C. macrorhizon can successfully attract potential pollinator honeybees, all three Cymbidium possess an effective self-pollination system in which the rostellum that physically separates the stigma and pollinia is absent. Because mixotrophic and mycoheterotrophic Cymbidium occupy low-light niches, pollinator foraging would be negatively influenced by low-light intensity. In partial and fully mycoheterotrophic Cymbidium, autogamy would likely be favoured as a reproductive assurance to compensate for pollinator limitation due to their lack of nectar and pollinators’ hostile habitat preferences.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Baker HG (1955) Self-compatibility and establishment after “long-distance” dispersal. Evolution 9:347–348

    Article  Google Scholar 

  • Bellusci F, Pellegrino G, Musacchio A (2009) Different levels of inbreeding depression between outcrossing and selfing Serapias species. Biol Plant 53:175–178

    Article  Google Scholar 

  • Bidartondo MI (2005) The evolutionary ecology of myco-heterotrophy. New Phytol 167:335–352

    PubMed  Article  Google Scholar 

  • Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc B 271:1799–1806

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Bonatti PM, Sgarbi E, Del Prete C (2006) Gynostemium micromorphology and pollination in Epipactis microphylla (Orchidaceae). J Plant Res 119:431–437

    PubMed  Article  Google Scholar 

  • Burns-Balogh P, Szlachetko DL, Dafni A (1987) Evolution, pollination, and systematics of the tribe Neottieae (Orchidaceae). Plant Syst Evol 156:91–115

    Article  Google Scholar 

  • Catling PM (1990) Auto-pollination in the Orchidaceae. Orchid Biol Rev Perspect 5:121–158

    Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Ann Rev Ecol Evol Syst 18:237–268

    Article  Google Scholar 

  • Cheng J, Liu SY, He R, Wei XJ, Luo YB (2007) Food-deceptive pollination in Cymbidium lancifolium (Orchidaceae) in Guangxi, China. Biodiver Sci 15:608–617

    Article  Google Scholar 

  • Chung MY, Chung MG (2003) The breeding systems of Cremastra appendiculata and Cymbidium goeringii: high levels of annual fruit failure in two self-compatible orchids. Ann Bot Fenn 40:81–85

    Google Scholar 

  • Comba L (1999) Patch use by bumblebees (Hymenoptera Apidae): temperature, wind, flower density and traplining. Ethol Ecol Evol 11:243–264

    Article  Google Scholar 

  • Fang Q, Chen YZ, Huang SQ (2012) Generalist passerine pollination of a winter-flowering fruit tree in central China. Ann Bot 109:379–384

    PubMed Central  PubMed  Article  Google Scholar 

  • Gale S (2007) Autogamous seed set in a critically endangered orchid in Japan: pollination studies for the conservation of Nervilia nipponica. Plant Syst Evol 268:59–73

    Article  Google Scholar 

  • Hentrich H, Kaiser R, Gottsberger G (2010) The reproductive biology of Voyria (Gentianaceae) species in French Guiana. Taxon 59:867–880

    Google Scholar 

  • Herrera CM (1995a) Floral biology, microclimate, and pollination by ectothermic bees in an early-blooming herb. Ecology 76:218–228

    Article  Google Scholar 

  • Herrera CM (1995b) Microclimate and individual variation in pollinators: flowering plants are more than their flowers. Ecology 76:1516–1524

    Article  Google Scholar 

  • Herrera CM (1997) Thermal biology and foraging responses of insect pollinators to the forest floor irradiance mosaic. Oikos 78:601–611

    Article  Google Scholar 

  • Jersáková J, Johnson SD (2006) Lack of floral nectar reduces self-pollination in a fly-pollinated orchid. Oecologia 147:60–68

    PubMed  Article  Google Scholar 

  • Johnson SD, Peter CI, Ågren J (2004) The effects of nectar addition on pollen removal and geitonogamy in the non-rewarding orchid Anacamptis morio. Proc R Soc B 271:803–809

    PubMed Central  PubMed  Article  Google Scholar 

  • Jones DL (1985) The pollination of Gastrodia sesamoides R. Br. in southern Victoria. Victorian Nat 102:52–54

    Google Scholar 

  • Kato M, Tsuji K, Kawakita A (2006) Pollinator and stem-and corm-boring insects associated with mycoheterotrophic orchid Gastrodia elata. Ann Entomol Soc Am 99:851–858

  • Klooster MR, Culley TM (2009) Comparative analysis of the reproductive ecology of Monotropa and Monotropsis: two mycoheterotrophic genera in the Monotropoideae (Ericaceae). Am J Bot 96:1337–1347

    PubMed  Article  Google Scholar 

  • Kropf M, Renner SS (2008) Pollinator-mediated selfing in two deceptive orchids and a review of pollinium tracking studies addressing geitonogamy. Oecologia 155:497–508

    PubMed  Article  Google Scholar 

  • Leake JR (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216

    Article  Google Scholar 

  • Lee HL, Sodhi NS, Elmqvist T (2001) Bee diversity along a disturbance gradient in tropical lowland forests of south-east Asia. J Appl Ecol 38:180–192

    Article  Google Scholar 

  • Lehnebach CA, Robertson AW, Hedderley D (2005) Pollination studies of four New Zealand terrestrial orchids and the implication for their conservation. NZ J Bot 43:467–477

    Article  Google Scholar 

  • Liu KW, Liu ZJ, Huang L, Li LQ, Chen LJ, Tang GD (2006) Pollination: self-fertilization strategy in an orchid. Nature 441:945–946

    CAS  PubMed  Article  Google Scholar 

  • Liu Z, Chen X, Chen S, Cribb PJ (2009) Cymbidium. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 25., OrchidaceaeScience Press and Missouri Botanical Garden Press, Beijing, pp 260–281

    Google Scholar 

  • Lloyd DG (1992) Self- and cross-fertilization in plants. II. The selection of self-fertilization. Int J Plant Sci 153:370–380

    Article  Google Scholar 

  • Maekawa F (1971) The wild orchids of Japan in colour. Seibundo-shinkousha, Tokyo

    Google Scholar 

  • Merckx V, Freudenstein JV (2010) Evolution of mycoheterotrophy in plants: a phylogenetic perspective. New Phytologist 185:605–609

    PubMed  Article  Google Scholar 

  • Motomura H, Yukawa T, Ueno O, Kagawa A (2008) The occurrence of crassulacean acid metabolism in Cymbidium (Orchidaceae) and its ecological and evolutionary implications. J Plant Res 121:163–177

    CAS  PubMed  Article  Google Scholar 

  • Motomura H, Selosse MA, Martos F, Kagawa A, Yukawa T (2010) Mycoheterotrophy evolved from mixotrophic ancestors: evidence in Cymbidium (Orchidaceae). Ann Bot 106:573–581

    PubMed Central  PubMed  Article  Google Scholar 

  • Neiland MRM, Wilcock CC (1998) Fruit set, nectar reward, and rarity in the Orchidaceae. Am J Bot 85:1657–1671

    CAS  PubMed  Article  Google Scholar 

  • Newmark WD (2001) Tanzanian forest edge microclimatic gradients: dynamic patterns. Biotropica 33:2–11

    Article  Google Scholar 

  • Ogura-Tsujita Y, Yokoyama J, Miyoshi K, Yukawa T (2012) Shifts in mycorrhizal fungi during the evolution of autotrophy to mycoheterotrophy in Cymbidium (Orchidaceae). Am J Bot 99:1158–1176

    PubMed  Article  Google Scholar 

  • Peakall R (1989) A new technique for monitoring pollen flow in orchids. Oecologia 7:361–365

    Article  Google Scholar 

  • Pedersen HAE, Ehlers BK (2000) Local evolution of obligate autogamy in Epipactis helleborine subsp. neerlandica (Orchidaceae). Plant Syst Evol 223:173–183

    Article  Google Scholar 

  • Peter CI, Johnson SD (2009) Autonomous self-pollination and pseudo-fruit set in South African species of Eulophia (Orchidaceae). S Afr J Bot 75:791–797

    Article  Google Scholar 

  • Shefferson RP, McCormick MK, Whigham DF, O’Neill JP (2011) Life history strategy in herbaceous perennials: inferring demographic patterns from the aboveground dynamics of a primarily subterranean, mycoheterotrophic orchid. Oikos 120:1291–1300

    Article  Google Scholar 

  • Suetsugu K (2013a) Autogamous fruit set in a mycoheterotrophic orchid Cyrtosia septentrionalis. Plant Syst Evol 299:481–486

    Article  Google Scholar 

  • Suetsugu K (2013b) Delayed autonomous self-pollination in two Japanese varieties of Epipactis helleborine (Orchidaceae). Bot J Linn Soc 173:733–743

    Article  Google Scholar 

  • Suetsugu K (2014a) Autonomous self-pollination in the nectarless orchid Pogonia minor. Plant Spec Biol. doi:10.1111/1442-1984.12037

    Google Scholar 

  • Suetsugu K (2014b) Gastrodia flexistyloides (Orchidaceae), a new mycoheterotrophic plant with complete cleistogamy from Japan. Phytotaxa 175:270–274

    Article  Google Scholar 

  • Suetsugu K, Fukushima S (2013) Pollination biology of the endangered orchid Cypripedium japonicum in a fragmented forest of Japan. Plant Spec Biol. doi:10.1111/1442-1984.12016

    Google Scholar 

  • Suetsugu K, Fukushima S (2014) Bee pollination of the endangered orchid Calanthe discolor through a generalized food-deceptive system. Plant Syst Evol 300:453–459

    Article  Google Scholar 

  • Suetsugu K, Kawakita A, Kato M (2008) Host range and selectivity of the hemiparasitic plant Thesium chinense (Santalaceae). Ann Bot 102:49–55

    PubMed Central  PubMed  Article  Google Scholar 

  • Suetsugu K, Takeuchi Y, Futai K, Kato M (2012) Host selectivity, haustorial anatomy and impact of the invasive parasite Parentucellia viscosa on floodplain vegetative communities in Japan. Bot J Linn Soc 170:69–78

    Article  Google Scholar 

  • Sugiura N (2013) Specialized pollination by carpenter bees in Calanthe striata (Orchidaceae), with a review of carpenter bee pollination in orchids. Bot J Linn Soc 171:730–743

    Article  Google Scholar 

  • Takahashi H, Nishio E, Hayashi H (1993) Pollination biology of the saprophytic species Petrosavia sakuraii (Makino) van Steenis in Central Japan. J Plant Res 106:213–217

    Article  Google Scholar 

  • Tałałaj I, Brzosko E (2008) Selfing potential in Epipactis palustris, E. helleborine and E. atrorubens (Orchidaceae). Plant Syst Evol 276:21–29

    Article  Google Scholar 

  • Totland Ø (2001) Environment-dependent pollen limitation and selection on floral traits in an alpine species. Ecology 82:2233–2244

    Article  Google Scholar 

  • Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN (2005) Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Bio J Linn Soc 84:1–54

    Article  Google Scholar 

  • Tsuji K, Kato M (2010) Odor-guided bee pollinators of two endangered winter/early spring blooming orchids, Cymbidium kanran and Cymbidium goeringii, in Japan. Plant Spec Biol 25:249–253

    Article  Google Scholar 

  • van der Pijl L, Dodson CH (1966) Orchid flowers, their pollination and evolution. University of Miami Press, Florida

    Google Scholar 

  • Wallace GD (1977) Studies of the Monotropoideae (Ericaceae). Floral nectaries: anatomy and function in pollination ecology. Am J Bot 64:199–206

    Article  Google Scholar 

  • Waterman RJ, Bidartondo MI (2008) Deception above, deception below: linking pollination and mycorrhizal biology of orchids. J Exp Bot 59:1085–1096

    CAS  PubMed  Article  Google Scholar 

  • Wyatt R (1988) Phylogenetic aspects of the evolution of self-pollination. In: Gottlieb LD, Jain SK (eds) Plant evolutionary biology. Chapman and Hall, London, pp 109–131

    Chapter  Google Scholar 

  • Yukawa T (2000) Identity of Cymbidium lancifolium complex. J Plant Res 64:135

    Google Scholar 

  • Yukawa T, Stern WL (2002) Comparative vegetative anatomy and systematics of Cymbidium (Cymbidieae: Orchidaceae). Bot J Linn Soc 138:383–419

    Article  Google Scholar 

  • Yukawa T, Miyoshi K, Yokohama J (2002) Molecular phylogeny and character evolution of Cymbidium (Orchidaceae). Bull Natl Sci Mus Tokyo 28:129–139

    Google Scholar 

  • Zhang D, Saunders RMK (2000) Reproductive biology of a mycoheterotrophic species, Burmannia wallichii (Burmanniaceae). Bot J Linn Soc 132:359–367

    Article  Google Scholar 

  • Zhou X, Lin H, Fan XL, Gao JY (2012) Autonomous self-pollination and insect visitation in a saprophytic orchid, Epipogium roseum (D.Don) Lindl. Aust J Bot 60:154–159

    Article  Google Scholar 

Download references

Acknowledgments

I thank Y. Kitada, T. Yamamoto, K. Onuki and S. Mori for habitat information and/or field study assistance, and K. Onuki, Drs. M. Kato and A. Kawakita for helpful discussions. This study was partly supported by a Japan Society for the Promotion of Science Research Fellowships for Young Scientists Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Suetsugu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suetsugu, K. Autonomous self-pollination and insect visitors in partially and fully mycoheterotrophic species of Cymbidium (Orchidaceae). J Plant Res 128, 115–125 (2015). https://doi.org/10.1007/s10265-014-0669-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-014-0669-4

Keywords

  • Autogamy
  • Mixotrophy
  • Mycoheterotrophy
  • Orchidaceae
  • Pollination biology
  • Self-pollination