Skip to main content
Log in

DNA content in South American endemic species of Lathyrus

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The genome size was surveyed in 13 Notolathyrus species endemic to South America by flow cytometry and analyzed in an evolutionary and biogeographic context. A DNA content variation of 1.7-fold was registered, and four groups of species with different DNA content were determined. Although, the 2C values were correlated with the total chromosome length and intrachromosomal asymmetry index (A1), the karyotype formula remained almost constant. The conservation of the karyotype formula is in agreement with proportional changes of DNA in the chromosome arms. Species with annual life cycle and shorter generation time had the lowest DNA content and the data suggest that changes in DNA content involved reductions of genome size in the perennial to annual transitions. The variation of 2C values was correlated with precipitation of the coldest quarter and, to some extent, with altitude. Additional correlations with other variables were observed when the species were analyzed separately according to the biogeographic regions. In general, the species with higher DNA content were found in more stable environments. The bulk of evidence suggests that changes on genome size would have been one of the most important mechanisms that drove or accompanied the diversification of Notolathyrus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albach DC, Grilhuber J (2004) Genome size variation and evolution in Veronica. Ann Bot 94:897–911

    Article  CAS  PubMed  Google Scholar 

  • Ali HBM, Meister A, Schubert I (2000) DNA content, rDNA loci, and DAPI bands reflect the phylogenetic distance between Lathyrus species. Genome 43:1027–1032

    Article  CAS  PubMed  Google Scholar 

  • Ayaz E, Ertekin SA (2008) Karyotype analysis of two species of genus Lathyrus from South-eastern Anatolia, Turkey. Int J Agric Biol 5:569–572

    Google Scholar 

  • Bancheva S, Greilhuber J (2006) Genome size in Bulgarian Centaurea s.l. (Asteraceae). Plant Syst Evol 257:95–117

    Article  CAS  Google Scholar 

  • Baranyi M, Greilhuber J (1999) Genome size in Allium: in quest of reproducible data. Ann Bot 83:687–695

    Article  Google Scholar 

  • Battistin A, Fernández A (1994) Karyotypes of four species of South America natives and one cultivated species of Lathyrus L. Caryologia 47:325–330

    Article  Google Scholar 

  • Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc R Soc Lond B 181:109–135

    Article  CAS  PubMed  Google Scholar 

  • Bennett MD (1976) DNA amount, latitude, and crop plant distribution. Environ Exp Bot 16:93–108

    Article  CAS  Google Scholar 

  • Bennett MD (1982a) Nucleotypic basis of the spatial ordering of the chromosomes in eukaryotes and implications of the order for genome evolution and phenotypic variation. In: Dover GA, Flavell RB (eds) Genome evolution. Academic Press, London and New York

    Google Scholar 

  • Bennett MD (1982b) The spatial distribution of chromosomes. In: Brandham PE, Bennett MD (eds) Kew chromosome conference II. The Royal Botanic Gardens, Kew, pp 71–79

    Google Scholar 

  • Bennett MD (1987) Variation in genomic form in plants and its ecological implications. New Phytol 106:177–200

    Article  Google Scholar 

  • Bennett MD (1995) The development and use of genomic in situ hybridization (GISH) as a new tool in plant biosystematics. In: Brandham PE, Bennett MD (eds) Kew chromosome conference IV. The Royal Botanic Gardens, Kew, pp 167–183

    Google Scholar 

  • Bennett MD, Leitch IJ (2005) Genome size evolution in plants. In: Gregory TR (ed) The evolution of the genome 2:89–162. Elsevier Academics, New York

    Google Scholar 

  • Bennett MD, Smith JB (1991) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B 334:309–345

    Article  CAS  Google Scholar 

  • Bennett MD, Johnston S, Hodnett GL, Price HJ (2000) Allium cepa L. cultivars from four continents compared by flow cytometry show nuclear DNA constancy. Ann Bot 85:351–357

    Article  CAS  Google Scholar 

  • Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Kellogg EA (1997) Do plants have a one-way ticket to genomic obesity? Plant Cell 9:1509–1514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132

    Article  CAS  PubMed  Google Scholar 

  • Bottini MCJ, Greizerstein EJ, Aulicino MB, Poggio L (2000) Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW patagonian species of Berberis L. (Berberidaceae). Ann Bot 86:565–573

    Article  CAS  Google Scholar 

  • Brandham PE, Doherty MJ (1998) Size variation in the Aloaceae, an angiosperm family displaying karyotypic orthoselection. Ann Bot 82:67–73

    Article  Google Scholar 

  • Burkart A (1935) Revision of the Lathyrus species from Argentina Republic (in Spanish). R Fac Agron Univ Nac La Plata 8:41–128

    Google Scholar 

  • Burkart A (1942) New contributions to the systematics of the South American species of Lathyrus (in Spanish). Darwiniana 6:9–29

    Google Scholar 

  • Caceres ME, De Pace C, Scarascia Mugnozza GT, Kotsonis P, Ceccarelli M, Cionini PG (1998) Genome size variation within Dasypyrum villosum: correlation with chromosomal traits, environmental factors and plant phenotypic characteristics and behavior in reproduction. Theor Appl Genet 96:559–567

  • Chalup L, Grabiele M, Solís Neffa V, Seijo G (2012) Structural karyotypic variability and polyploidy in natural populations of the South American Lathyrus nervosus Lam. (Fabaceae). Plant Syst Evol 298:761–773

  • Choi WY (1971) Variation in nuclear DNA content in the genus Vicia. Genetics 68:195–211

    Google Scholar 

  • Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW (2013) InfoStat version 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

  • Doležel J, Bartos J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110

    Article  PubMed  Google Scholar 

  • Doležel J, Greilhuber RJ, Suda J (2007) Estimation of nuclear DNA content in plant using flow cytometry. Nat Protoc 2:2233–2244

    Article  PubMed  Google Scholar 

  • Doyle JJ, Luckow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghasem K, Danesh-Gilevaei M, Aghaalikhani M (2011) Karyotypic and nuclear DNA variations in Lathyrus sativus (Fabaceae). Caryologia 64:42–54

    Article  Google Scholar 

  • Gregory TR (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev 76:65–101

    Article  CAS  PubMed  Google Scholar 

  • Gregory TR (2004) Insertion-deletion biases and the evolution of genome size. Gene 324:15–34

    Article  CAS  PubMed  Google Scholar 

  • Gregory TR (2005a) Synergy between sequence and size in large-scale genomics. Nat Rev Genet 6:699–708

    Article  CAS  PubMed  Google Scholar 

  • Gregory TR (2005b) The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann Bot 95:133–143

    Article  CAS  PubMed  Google Scholar 

  • Greilhuber J (1998) Intraspecific variation in genome size: a critical reassessment. Ann Bot 82(Suppl. A):27–35

  • Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifying its existence. Ann Bot 95:91–98

    Article  CAS  PubMed  Google Scholar 

  • Grime JP, Mowforth MA (1982) Variation in genome size an ecological interpretation. Nature 299:151–153

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Jakob SS, Meister A, Blattner FR (2004) The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Mol Biol Evol 21:860–869

    Article  CAS  PubMed  Google Scholar 

  • Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kenicer GJ, Kajita T, Pennington RT, Murata J (2005) Systematics and biogeography of Lathyrus (Leguminosae) based on internal transcribed spacer and cpDNA sequence data. Am J Bot 92:1199–1209

    Article  CAS  PubMed  Google Scholar 

  • Klamt A, Schifino-Wittmann MT (2000) Karyotype morphology and evolution in some Lathyrus (Fabaceae) species of southern Brazil. Genet Mol Biol 23:463–467

    Article  Google Scholar 

  • Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol Lett 5:66–76

    Article  Google Scholar 

  • Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot 95:177–190

    Article  CAS  PubMed  Google Scholar 

  • Krapovickas A, Fuchs AM (1957) Cytological notes in legumes (in Spanish). II. R Investig Agric 11:215–218

    Google Scholar 

  • Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. Annu Rev Ecol Evol Syst 38:847–876

    Article  Google Scholar 

  • Kupicha FK (1983) The infrageneric structure of Lathyrus. Notes R Bot Gard Edinb 41:209–244

    Google Scholar 

  • Levin DA, Funderburg SW (1979) Genome size in angiosperms: temperate versus tropical species. Am Nat 114:784–795

  • Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mac Gillivray CW, Grime JP (1995) Genome size predicts frost resistance in British herbaceous plants: implications for rates of vegetation response to global warming. Funct Ecol 9:320–325

    Article  Google Scholar 

  • Moscone EA, Baranyi M, Ebert L, Greilhuber L, Ehrendorfer F, Hunziker AT (2003) Analysis of nuclear DNA content in Capsicum (Solanaceae) by flow cytometry and Feulgen densitometry. Ann Bot 92:21–29

    Article  PubMed  Google Scholar 

  • Nandini AV, Murray BG (1997) Intra and interspecific variation in genome size in Lathyrus (Leguminosae). Bot J Linn Soc 125:359–366

    Google Scholar 

  • Naranjo CA, Ferrari MR, Palermo AM, Poggio L (1998) Karyotype DNA content and meiotic behaviour in five South American species of Vicia (Fabaceae). Ann Bot 82:757–764

    Article  Google Scholar 

  • Narayan RKJ (1982) Discontinuous DNA variation in the evolution of plant species: the genus Lathyrus. Evolution 36:877–891

    Article  Google Scholar 

  • Narayan RKJ (1998) The role of genomic constraints upon evolutionary changes in genome size and chromosome organization. Ann Bot 82:57–66

    Article  Google Scholar 

  • Narayan RKJ, Durrant A (1983) DNA distribution in chromosomes of Lathyrus species. Genetica 61:47–53

    Article  CAS  Google Scholar 

  • Narayan RKJ, McIntre FK (1989) Chromosomal DNA variation, genomic constraints and recombination in Lathyrus. Genetica 79:45–52

    Article  CAS  Google Scholar 

  • Ohri D, Khoshoo TN (1986) Genome size in gymnosperms. Plant Syst Evol 153:119–132

    Article  Google Scholar 

  • Petrov DA (2002) Mutational equilibrium model of genome size evolution. Theor Popul Biol 61:531–543

    Article  PubMed  Google Scholar 

  • Petrov DA, Hartl DL (1997) Trash DNA is what gets thrown away: high rate of DNA loss in Drosophila. Gene 205:279–289

    Article  CAS  PubMed  Google Scholar 

  • Poggio L, Naranjo CA (1990) DNA content and evolution in higher plants (in Spanish). Acad Nac Ex Fis Nat Buenos Aires Monografía 5:27–37

    Google Scholar 

  • Poggio L, Burghardt AD, Hunziker JH (1989) Nuclear DNA variation in diploid and polyploid taxa of Larrea (Zygophyllaceae). J Hered 63:321–328

    Article  Google Scholar 

  • Poggio L, Rosato M, Chiavarino AM, Naranjo C (1998) Genome size and environmental correlations in Maize (Zea mays ssp. mays, Poaceae). Ann Bot 82:107–115

    Article  Google Scholar 

  • Poggio L, Espert SM, Fortunato RH (2008) Evolutive cytogenetics in American legumes (in Spanish). Rodriguesia 59:423–433

    Google Scholar 

  • Price HJ (1988) Nuclear DNA content variation within angiosperm species. Evol Trends Plants 2:53–60

    Google Scholar 

  • Price HJ, Bachmann K (1975) DNA content and evolution in the Microseridinae. Am J Bot 62:262–267

    Article  CAS  Google Scholar 

  • Price HJ, Johnston JS (1996) Influence of light on DNA content of Helianthus annuus Linnaeus. Proc Natl Acad Sci USA 93:11264–11267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Price HJ, Dillon SL, Hodnett G, Rooney WL, Ross L, Johnston JS (2005) Genome evolution in the genus Sorghum (Poaceae). Ann Bot 95:219–227

    Article  CAS  PubMed  Google Scholar 

  • Rayburn AL, Auger JA (1990) Genome size variation in Zea mays spp mays adapted to different altitudes. Theor Appl Genet 79:470–474

    Article  CAS  PubMed  Google Scholar 

  • Rees H, Hazarika MH (1969) Chromosome evolution in Lathyrus. In: Darlington CD, Lewis KR (eds) Chromosomes today, vol 2. New York, pp 158–165

  • Rees H, Narayan GH (1988) Chromosome constrains: chiasma frequency and genome size. In: Brandham PE (ed) Kew chromosome conference III. The Royal Botanic Gardens, Kew, pp 231–240

  • Schmuths H, Meister A, Horres R, Bachmann K (2004) Genome size variation among accessions of Arabidopsis thaliana. Ann Bot 93:317–321

    Article  CAS  PubMed  Google Scholar 

  • Schweizer D, Loidl J (1987) A model for heterochromatin dispersion and the evolution of C-band patterns. In: Sthal A, Luciani JM, Vagner-Capodano AM (eds) Chromosomes today, vol 9. Marseille, pp 61–74

  • Seal AG (1983) DNA variation in Festuca. Heredity 50:225–236

    Article  CAS  Google Scholar 

  • Seal AG, Rees H (1982) The distribution of quantitative DNA changes associated with the evolution of diploid Festuceae. Heredity 49:179–190

    Article  Google Scholar 

  • Seijo JG (2002) Cytogenetic studies in South American species of the genus Lathyrus, section Notolathyrus (Leguminosae) (in Spanish). PhD thesis, National University of Córdoba, Argentina

  • Seijo JG, Fernández A (2003) Karyotype analysis and chromosome evolution in South American species of Lathyrus (Leguminosae). Am J Bot 90:980–987

    Article  PubMed  Google Scholar 

  • Seijo JG, Solís Neffa VG (2006) Cytogenetic studies in the rare South American Lathyrus hasslerianus Burk. Cytologia 71:11–19

    Article  Google Scholar 

  • Sims LE, Price HJ (1985) Nuclear DNA content variation in Helianthus annuus (Asteraceae). Am J Bot 72:1213–1219

    Article  Google Scholar 

  • Soltis DE, Soltis PS, Tate JA (2003) Advances in the study of polyploidy since plant speciation. New Phytol 161:173–191

    Article  Google Scholar 

  • Stebbins GL (1957) Self-fertilization and population variability in the higher plants. Am Nat 91:337–354

    Article  Google Scholar 

  • Temsch EM, Greilhuber J (2000) Genome size variation in Arachis hypogaea and A. monticola re-evaluated. Genome 43:449–451

    Article  CAS  PubMed  Google Scholar 

  • Temsch EM, Greilhuber J (2001) Genome size in Arachis duranensis: a critical study. Genome 44:826–830

    Article  CAS  PubMed  Google Scholar 

  • Thiers B (2013) Index herbariorum: a global directory of public herbaria and associated staff. Botanical Garden’s Virtual Herbarium, New York. http://sweetgum.nybg.org/ih

  • Wakamiya I, Newton R, Johnston JS, Price HJ (1993) Genome size and environmental factors in the genus Pinus. Am J Bot 80:1235–1241

    Article  Google Scholar 

  • Wendel JF, Cronn RC, Johnston JS, Price HJ (2002) Feast and famine in plant genomes. Genetica 115:37–47

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Guyot R, Yahiaoui N, Keller B (2003) CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements. Plant Physiol 132:52–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto K, Fujiwara T, Blumenreich ID (1984) Karyotypes and morphological characteristics of some species in the genus Lathyrus L. J Breed 34:273–284

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by grants of Agencia Nacional de Promoción Científica, Tecnológica y de Innovación (ANPCyT-FONCyT-UNNE PICTO 2007-90). Collection trips were partially supported by the Myndel Botanica Foundation. L. Chalup is a Doctoral Fellow of the National Research Council of Argentina (CONICET), J.G. Seijo and V.G. Solís Neffa are members of the Carrera del Investigador Científico of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Chalup.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalup, L., Grabiele, M., Neffa, V.S. et al. DNA content in South American endemic species of Lathyrus . J Plant Res 127, 469–480 (2014). https://doi.org/10.1007/s10265-014-0637-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-014-0637-z

Keywords

Navigation