Journal of Plant Research

, Volume 127, Issue 3, pp 389–397

Analysis of the complete plastid genome of the unicellular red alga Porphyridium purpureum

  • Naoyuki Tajima
  • Shusei Sato
  • Fumito Maruyama
  • Ken Kurokawa
  • Hiroyuki Ohta
  • Satoshi Tabata
  • Kohsuke Sekine
  • Takashi Moriyama
  • Naoki Sato
Regular Paper

DOI: 10.1007/s10265-014-0627-1

Cite this article as:
Tajima, N., Sato, S., Maruyama, F. et al. J Plant Res (2014) 127: 389. doi:10.1007/s10265-014-0627-1

Abstract

We determined the complete nucleotide sequence of the plastid genome of the unicellular marine red alga Porphyridium purpureum strain NIES 2140, belonging to the unsequenced class Porphyridiophyceae. The genome is a circular DNA composed of 217,694 bp with the GC content of 30.3 %. Twenty-nine of the 224 protein-coding genes contain one or multiple intron(s). A group I intron was found in the rpl28 gene, whereas the other introns were group II introns. The P. purpureum plastid genome has one non-coding RNA (ncRNA) gene, 29 tRNA genes and two nonidentical ribosomal RNA operons. One rRNA operon has a tRNAAla(UGC) gene between the rrs and the rrl genes, whereas another has a tRNAIle(GAU) gene. Phylogenetic analyses suggest that the plastids of Heterokontophyta, Cryptophyta and Haptophyta originated from the subphylum Rhodophytina. The order of the genes in the ribosomal protein cluster of the P. purpureum plastid genome differs from that of other Rhodophyta and Chromalveolata. These results suggest that a large-scale rearrangement occurred in the plastid genome of P. purpureum after its separation from other Rhodophyta.

Keywords

Genome rearrangement Plastid genome Porphyridium purpureum Rhodophyta rRNA operon 

Supplementary material

10265_2014_627_MOESM1_ESM.pdf (400 kb)
Supplementary material 1 (PDF 400 kb)
10265_2014_627_MOESM2_ESM.xls (42 kb)
Supplementary material 2 (XLS 42 kb)
10265_2014_627_MOESM3_ESM.xls (34 kb)
Supplementary material 3 (XLS 33 kb)
10265_2014_627_MOESM4_ESM.aln (1.2 mb)
Supplementary material 4 (ALN 1276 kb)
10265_2014_627_MOESM5_ESM.aln (1.3 mb)
Supplementary material 5 (ALN 1354 kb)
10265_2014_627_MOESM6_ESM.aln (758 kb)
Supplementary material 6 (ALN 757 kb)
10265_2014_627_MOESM7_ESM.aln (901 kb)
Supplementary material 7 (ALN 900 kb)
10265_2014_627_MOESM8_ESM.aln (262 kb)
Supplementary material 8 (ALN 261 kb)
10265_2014_627_MOESM9_ESM.aln (170 kb)
Supplementary material 9 (ALN 170 kb)
10265_2014_627_MOESM10_ESM.doc (26 kb)
Supplementary material 10 (DOC 25 kb)

Copyright information

© The Botanical Society of Japan and Springer Japan 2014

Authors and Affiliations

  • Naoyuki Tajima
    • 1
    • 2
  • Shusei Sato
    • 3
  • Fumito Maruyama
    • 4
  • Ken Kurokawa
    • 2
    • 5
  • Hiroyuki Ohta
    • 2
    • 6
  • Satoshi Tabata
    • 7
  • Kohsuke Sekine
    • 1
    • 2
  • Takashi Moriyama
    • 1
    • 2
  • Naoki Sato
    • 1
    • 2
  1. 1.Department of Life Sciences, Graduate School of Arts and SciencesUniversity of TokyoTokyoJapan
  2. 2.JST, CRESTTokyoJapan
  3. 3.Department of Environmental Life Sciences, Graduate School of Life SciencesTohoku UniversitySendaiJapan
  4. 4.Section of Bacterial Pathogenesis, Graduate School of Medical and Dental ScienceTokyo Medical and Dental UniversityTokyoJapan
  5. 5.Earth-Life Science InstituteTokyo Institute of TechnologyTokyoJapan
  6. 6.Center for Biological Resources and InformaticsTokyo Institute of TechnologyYokohamaJapan
  7. 7.Kazusa DNA Research InstituteKisarazuJapan

Personalised recommendations