Journal of Plant Research

, Volume 126, Issue 6, pp 847–857 | Cite as

Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria x ananassa fruits

  • Yasuko Kadomura-Ishikawa
  • Katsuyuki Miyawaki
  • Sumihare Noji
  • Akira TakahashiEmail author
Regular Paper


Anthocyanins are widespread, essential secondary metabolites in higher plants during color development in certain flowers and fruits. In strawberries, anthocyanins are also key contributors to fruit antioxidant capacity and nutritional value. However, the effects of different light qualities on anthocyanin accumulation in strawberry (Fragaria x ananassa, cv. Sachinoka) fruits remain elusive. In the present study, we showed the most efficient increase in anthocyanin content occurred by blue light irradiation. Light sensing at the molecular level was investigated by isolation of two phototropin (FaPHOT1 and FaPHOT2), two cryptochrome (FaCRY1 and FaCRY2), and two phytochrome (FaPHYA and FaPHYB) homologs. Expression analysis revealed only FaPHOT2 transcripts markedly increased depending on fruit developmental stage, and a corresponding increase in anthocyanin content was detected. FaPHOT2 knockdown resulted in decreased anthocyanin content; however, overexpression increased anthocyanin content. These findings suggested blue light induced anthocyanin accumulation, and FaPHOT2 may play a role in sensing blue light, and mediating anthocyanin biosynthesis in strawberry fruits. This is the first report to find a relationship between visible light sensing, and color development in strawberry fruits.


Anthocyanins Blue light Flavonoid pathway Photoreceptor Strawberry fruits 









Light, oxygen or voltage


Phenylalanine ammonia-lyase


Chalcone synthase


Chalcone isomerase


Flavanone 3-hydroxylase




Anthocyanidin synthase


Flavonoid glycosyltransferase



We thank Koichi Hayashi for donating strawberry fruit samples. We also thank Toshifumi Miki and Keisuke Hirota (Tokushima Agricultural Research Center, Japan) for invaluable advice and donations of strawberry fruit samples. Ourgenic Co., Ltd. supported this work (Tokushima, Japan). This work was also financially supported by the LED-Life project of the University of Tokushima, Japan.

Supplementary material

10265_2013_582_MOESM1_ESM.pptx (1.4 mb)
Supplementary material 1 (PPTX 1449 kb)
10265_2013_582_MOESM2_ESM.docx (110 kb)
Supplementary material 2 (DOCX 110 kb)


  1. Almeida JR, D’Amico E, Preuss A, Carbone F, de Vos CH, Deiml B, Mourgues F, Perrotta G, Fischer TC, Bovy AG, Martens S, Rosati C (2007) Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (Fragaria x ananassa). Arch Biochem Biophys 465:61–71. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  2. Azuma A, Yakushiji H, Koshita Y, Kobayashi S (2012) Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236:1067–1080. doi: 10.1007/s00425-012-1650-x PubMedCrossRefGoogle Scholar
  3. Briggs WR, Christie JM (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant 7:204–210. doi: 10.1016/S1360-1385(02)02245-8 CrossRefGoogle Scholar
  4. Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45. doi: 10.1146/annurev.arplant.58.032806.103951 PubMedCrossRefGoogle Scholar
  5. Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ, O’Hara A, Kelly SM, Hothorn M, Smith BO, Hitomi K, Jenkins GI, Getzoff ED (2012) Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335:1492–1496. doi: 10.1126/science.1218091 PubMedCrossRefGoogle Scholar
  6. Cominelli E, Gusmaroli G, Allegra D, Galbiati M, Wade HK, Jenkins GI, Tonelli C (2008) Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana. J Plant Physiol 165:886–894. doi: 10.1016/j.jplph.2007.06.010 PubMedCrossRefGoogle Scholar
  7. Fait A, Hanhineva K, Beleggia R, Dai N, Rogachev I, Nikiforova VJ, Fernie AR, Aharoni A (2008) Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development. Plant Physiol 148:730–750. doi: 10.1104/pp.108.120691 PubMedCrossRefGoogle Scholar
  8. Feng S, Wang Y, Yang S, Xu Y, Chen X (2010) Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. Planta 232:245–255. doi: 10.1007/s00425-010-1170-5 PubMedCrossRefGoogle Scholar
  9. Ferreyra ML, Rius S, Emiliani J, Pourcel L, Feller A, Morohashi K, Casati P, Grotewold E (2010) Cloning and characterization of a UV-B-inducible maize flavonol synthase. Plant J 62:77–91. doi: 10.1111/j.1365-313X.2010.04133.x CrossRefGoogle Scholar
  10. Frohnmeyer H, Bowler C, Schäfer E (1997) Evidence for some signal transduction elements involved in UV-light-dependent responses in parsley protoplast. J Exp Bot 48:739–750. doi: 10.1093/jxb/48.3.739 CrossRefGoogle Scholar
  11. Fuglevand G, Jackson JA, Jenkins GI (1996) UV-B, UV-A, and blue light signal transduction pathways interact synergistically to regulate chalcone synthase gene expression in Arabidopsis. Plant Cell 8:2347–2357. doi: 10.1105/tpc.8.12.2347 PubMedGoogle Scholar
  12. Giampieri F, Tulipani S, Alvarez-Suarez JM, Quiles JL, Mezzetti B, Battino M (2012) The strawberry: composition, nutritional quality, and impact on human health. Nutrition 28:9–19. doi: 10.1016/j.nut.2011.08.009 PubMedCrossRefGoogle Scholar
  13. Giliberto L, Perrotta G, Pallara P, Weller JL, Fraser PD, Bramley PM, Fiore A, Tavazza M, Giuliano G (2005) Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol 137:199–208. doi: 10.1104/pp.104.051987 PubMedCrossRefGoogle Scholar
  14. He J, Giusti MM (2010) Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol 1:163–187. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  15. Hoffmann T, Kalinowski G, Schwab W (2006) RNAi-induced silencing of gene expression in strawberry fruit (Fragaria x ananassa) by agroinfiltration: a rapid assay for gene function analysis. Plant J 48:818–826. doi: 10.1111/j.1365-313X.2006.02913.x PubMedCrossRefGoogle Scholar
  16. Jain M, Sharma P, Tyagi SB, Tyagi AK, Khurana JP (2007) Light regulation and differential tissue-specific expression of phototropin homologues from rice (Oryza sativa ssp. indica). Plant Sci 172:164–171. doi: 10.1016/j.plantsci.2006.08.003 CrossRefGoogle Scholar
  17. Jang IC, Henriques R, Seo HS, Nagatani A, Chua NH (2010) Arabidopsis PHYTOCHROME INTERACTING FACTOR Proteins Promote Phytochrome B Polyubiquitination by COP1 E3 Ligase in the Nucleus. Plant Cell 22:2370–2383. doi: 10.1105/tpc.109.072520 PubMedCrossRefGoogle Scholar
  18. Jarillo JA, Gabrys H, Capel J, Alonso JM, Ecker JR, Cashmore AR (2001) Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410:952–954. doi: 10.1038/35073622 PubMedCrossRefGoogle Scholar
  19. Jeong RD, Chandra-Shekara AC, Barman SR, Navarre D, Klessig DF, Kachroo A, Kachroo P (2010) Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase. Proc Natl Acad Sci USA 107:13538–13543. doi: 10.1073/pnas.1004529107 PubMedCrossRefGoogle Scholar
  20. Jiao Y, Yang H, Ma L, Sun N, Yu H, Liu T, Gao Y, Gu H, Chen Z, Wada M, Gerstein M, Zhao H, Qu LJ, Deng XW (2003) A genome-wide analysis of blue-light regulation of Arabidopsis transcription factor gene expression during seedling development. Plant Physiol 133:1480–1493. doi: 10.1104/pp.103.029439 PubMedCrossRefGoogle Scholar
  21. Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8:217–230. doi: 10.1038/nrg2049 PubMedCrossRefGoogle Scholar
  22. Josuttis M, Dietrich H, Treutter D, Will F, Linnemannstöns L, Krüger E (2010) Solar UVB response of bioactives in strawberry (Fragaria × ananassa Duch. L.): a comparison of protected and open-field cultivation. J Agric Food Chem 58:12692–12702. doi: 10.1021/jf102937e PubMedCrossRefGoogle Scholar
  23. Kataoka I, Sugiyama A, Beppu K (2003) Role of ultraviolet radiation in accumulation of anthocyanin in berries of ‘Gros Colman’ grapes (Vitis vinifera L.). J Jpn Soc Hortic Sci 72:1–6CrossRefGoogle Scholar
  24. Kortstee AJ, Khan SA, Helderman C, Trindade LM, Wu Y, Visser RG, Brendolise C, Allan A, Schouten HJ, Jacobsen E (2011) Anthocyanin production as a potential visual selection marker during plant transformation. Transgenic Res 20:1253–1264. doi: 10.1007/s11248-011-9490-1 PubMedCrossRefGoogle Scholar
  25. Kubasek WL, Shirley BW, McKillop A, Goodman HM, Briggs W, Ausubel FM (1992) Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings. Plant Cell 4:1229–1236. doi: 10.1105/tpc.4.10.1229 PubMedGoogle Scholar
  26. Łabuz J, Sztatelman O, Banaś AK, Gabryś H (2012) The expression of phototropins in Arabidopsis leaves: developmental and light regulation. J Exp Bot 63:1763–1771. doi: 10.1093/jxb/ers061 PubMedCrossRefGoogle Scholar
  27. Li QH, Yang HQ (2007) Cryptochrome signaling in plants. Photochem Photobiol 83:94–101. doi: 10.1562/2006-02-28-IR-826 PubMedCrossRefGoogle Scholar
  28. Li YY, Mao K, Zhao C, Zhao XY, Zhang HL, Shu HR, Hao YJ (2012) MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiol 160:1011–1022. doi: 10.1104/pp.112.199703 PubMedCrossRefGoogle Scholar
  29. Liu H, Liu B, Zhao C, Pepper M, Lin C (2011) The action mechanisms of plant cryptochromes. Trends Plant Sci 16:684–691. doi: 10.1016/j.tplants.2011.09.002 PubMedCrossRefGoogle Scholar
  30. Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, Deng XW (2001) Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13:2589–2607. doi: 10.1105/tpc.010229 PubMedGoogle Scholar
  31. Mao J, Zhang YC, Sang Y, Li QH, Yang HQ (2005) From The Cover: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci USA 102:12270–12275. doi: 10.1073pnas.0501011102 PubMedCrossRefGoogle Scholar
  32. Mazza G, Miniati E (1993) Anthocyanins in Fruits Vegetables and Grains. CRC Press, Boca Raton, pp 149–199Google Scholar
  33. Meyers KJ, Watkins CB, Pritts MP, Liu RH (2003) Antioxidant and antiproliferative activities of strawberries. J Agric Food Chem 51:6887–6892. doi: 10.1021/jf034506n PubMedCrossRefGoogle Scholar
  34. Miyawaki K, Fukuoka S, Kadomura Y, Hamaoka H, Mito T, Ohuchi H, Schwab W, Noji S (2012) Establishment of a novel system to elucidate the mechanisms underlying light-induced ripening of strawberry fruit with an Agrobacterium-mediated RNAi technique. Plant Biotechnol 29:271–277. doi: 10.5511/plantbiotechnology.12.0406a CrossRefGoogle Scholar
  35. Möglich A, Yang X, Ayers RA, Moffat K (2010) Structure and function of plant photoreceptors. Annu Rev Plant Biol 61:21–47. doi: 10.1146/annurev-arplant-042809-112259 PubMedCrossRefGoogle Scholar
  36. Niu SS, Xu CJ, Zhang WS, Zhang B, Li X, Lin-Wang K, Ferguson IB, Allan AC, Chen KS (2010) Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. Planta 231:887–899. doi: 10.1007/s00425-009-1095-z PubMedCrossRefGoogle Scholar
  37. Piazza P, Procissi A, Jenkins GI, Tonelli C (2002) Members of the c1/pl1 regulatory gene family mediate the response of maize aleurone and mesocotyl to different light qualities and cytokinins. Plant Physiol 128:1077–1086. doi: 10.1104/pp.010799 PubMedCrossRefGoogle Scholar
  38. Rizzini L, Favory JJ, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106. doi: 10.1126/science.1200660 PubMedCrossRefGoogle Scholar
  39. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  40. Salvatierra A, Pimentel P, Moya-Leon MA, Caligari PD, Herrera R (2010) Comparison of transcriptional profiles of flavonoid genes and anthocyanin contents during fruit development of two botanical forms of Fragaria chiloensis ssp. chiloensis. Phytochemistry 71:1839–1847. doi: 10.1016/j.phytochem.2010.08.005 PubMedCrossRefGoogle Scholar
  41. Sharrock RA, Clack T (2002) Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiol 130:442–456. doi: 10.1104/pp.005389 PubMedCrossRefGoogle Scholar
  42. Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP, Burns P, Davis TM, Slovin JP, Bassil N, Hellens RP, Evans C, Harkins T, Kodira C, Desany B, Crasta OR, Jensen RV, Allan AC, Michael TP, Setubal JC, Celton JM, Rees DJ, Williams KP, Holt SH, Ruiz Rojas JJ, Chatterjee M, Liu B, Silva H, Meisel L, Adato A, Filichkin SA, Troggio M, Viola R, Ashman TL, Wang H, Dharmawardhana P, Elser J, Raja R, Priest HD, Bryant DW Jr, Fox SE, Givan SA, Wilhelm LJ, Naithani S, Christoffels A, Salama DY, Carter J, Lopez Girona E, Zdepski A, Wang W, Kerstetter RA, Schwab W, Korban SS, Davik J, Monfort A, Denoyes-Rothan B, Arus P, Mittler R, Flinn B, Aharoni A, Bennetzen JL, Salzberg SL, Dickerman AW, Velasco R, Borodovsky M, Veilleux RE, Folta KM (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116. doi: 10.1038/ng.740 PubMedCrossRefGoogle Scholar
  43. Takos AM, Jaffé FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–12132. doi: 10.1104/pp.106.088104 PubMedCrossRefGoogle Scholar
  44. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi: 10.1093/nar/22.22.4673 PubMedCrossRefGoogle Scholar
  45. Ubi BE, Honda C, Bessho H, Kondo S, Wada M, Kobayashi S, Moriguchi T (2006) Expression analysis of anthocyanin biosynthetic genes in apple skin: effect of UV-B and temperature. Plant Sci 170:571–578. doi: 10.1016/j.plantsci.2005.10.009 CrossRefGoogle Scholar
  46. Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20. doi: 10.1093/mp/ssp106 PubMedCrossRefGoogle Scholar
  47. Wade HK, Bibikova TN, Valentine WJ, Jenkins GI (2001) Interactions within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue. Plant J 25:675–685. doi: 10.1046/j.1365-313x.2001.01001.x PubMedCrossRefGoogle Scholar
  48. Weller JL, Perrotta G, Schreuder ME, van Tuinen A, Koornneef M, Giuliano G, Kendrick RE (2001) Genetic dissection of blue-light sensing in tomato using mutants deficient in cryptochrome 1 and phytochromes A, B1 and B2. Plant J 25:427–440. doi: 10.1046/j.1365-313x.2001.00978.x PubMedCrossRefGoogle Scholar
  49. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493. doi: 10.1104/pp.126.2.485 PubMedCrossRefGoogle Scholar
  50. Wu D, Hu Q, Yan Z, Chen W, Yan C, Huang X, Zhang J, Yang P, Deng H, Wang J, Deng X, Shi Y (2012) Structural basis of ultraviolet-B perception by UVR8. Nature 484:214–219. doi: 10.1038/nature10931 PubMedCrossRefGoogle Scholar
  51. Zhang Y, Seeram NP, Lee R, Feng L, Heber D (2008) Isolation and identification of strawberry phenolics with antioxidant and human cancer cell antiproliferative properties. J Agric Food Chem 56:670–675. doi: 10.1021/jf071989c PubMedCrossRefGoogle Scholar
  52. Zhou B, Li Y, Xu Z, Yan H, Homma S, Kawabata S (2007) Ultraviolet A-specific induction of anthocyanin biosynthesis in the swollen hypocotyls of turnip (Brassica rapa). J Exp Bot 58:1771–1781. doi: 10.1093/jxb/erm036 PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2013

Authors and Affiliations

  • Yasuko Kadomura-Ishikawa
    • 1
  • Katsuyuki Miyawaki
    • 2
  • Sumihare Noji
    • 2
  • Akira Takahashi
    • 1
    Email author
  1. 1.Department of Nutrition, Faculty of MedicineThe University of TokushimaTokushimaJapan
  2. 2.Department of Life System, Institute of Technology and ScienceThe University of TokushimaTokushimaJapan

Personalised recommendations