Skip to main content
Log in

Or mutation leads to photo-oxidative stress responses in cauliflower (Brassica oleracea) seedlings during de-etiolation

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

An Erratum to this article was published on 16 October 2014

Abstract

The Orange (Or) gene is a gene mutation that can increase carotenoid content in plant tissues normally devoid of pigments. It affects plastid division and is involved in the differentiation of proplastids or non-colored plastids into chromoplasts. In this study, the de-etiolation process of the wild type (WT) cauliflower (Brassica oleracea L. var. botrytis) and Or mutant seedlings was investigated. We analyzed pigment content, plastid development, transcript abundance and protein levels of genes involved in the de-etiolation process. The results showed that Or can increase the carotenoid content in green tissues, although not as effectively as in non-green tissues, and this effect might be caused by the changes in biosynthetic pathway genes at both transcriptional and post-transcriptional levels. There was no significant difference in the plastid development process between the two lines. However, the increased content of antheraxanthin and anthocyanin, and higher expression levels of violaxanthin de-epoxidase gene (VDE) suggested a stress situation leading to photoinhibition and enhanced photoprotection in the Or mutant. The up-regulated expression levels of the reactive oxygen species (ROS)-induced genes, ZAT10 for salt tolerance zinc finger protein and ASCORBATE PEROXIDASE2 (APX2), suggested the existence of photo-oxidative stress in the Or mutant. In summary, abovementioned findings provide additional insight into the functions of the Or gene in different tissues and at different developmental stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Bartley GE, Scolnik PA (1995) Plant carotenoids: pigments for photoprotection, visual attraction, and human health. Plant Cell 7:1027–1038

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bouvier F, Backhaus RA, Camara B (1998) Induction and control of chromoplast-specific carotenoid genes by oxidative stress. J Biol Chem 273:30651–30659

    Article  PubMed  CAS  Google Scholar 

  • Bräutigam K, Dietzel L, Pfannschmidt T (2007) Plastid-nucleus communication: anterograde and retrograde signalling in the development and function of plastids. In: Bock R (ed) Cell and Molecular Biology of Plastids, vol 19. Springer, Berlin, pp 409–455

    Chapter  Google Scholar 

  • Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15:266–274

    Article  PubMed  CAS  Google Scholar 

  • Chen K-M, Holmström M, Raksajit W, Suorsa M, Piippo M, Aro E-M (2010) Small chloroplast-targeted DnaJ proteins are involved in optimization of photosynthetic reactions in Arabidopsis thaliana. BMC Plant Biol 10:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Cottage A, Mott EK, Kempster JA, Gray JC (2010) The Arabidopsis plastid-signalling mutant gun1 (genomes uncoupled1) shows altered sensitivity to sucrose and abscisic acid and alterations in early seedling development. J Exp Bot 61:3773–3786

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Crisp P, Walkey DGA, Bellman E, Roberts E (1975) A mutation affecting curd colour in cauliflower (Brassica oleracea L. var. Botrytis DC). Euphytica 24:173–176

    Article  Google Scholar 

  • Cunningham FX (2002) Regulation of carotenoid synthesis and accumulation in plants. Pure Appl Chem 74:1409–1417

    Article  CAS  Google Scholar 

  • Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Biol 49:557–583

    Article  CAS  Google Scholar 

  • Dekov I, Tsonev T, Yordanov I (2001) Effects of water stress and high-temperature stress on the structure and activity of photosynthetic apparatus of Zea Mays and Helianthus Annuus. Photosynthetica 38:361–366

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW (2002) Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153

    Article  PubMed  CAS  Google Scholar 

  • Dong H, Deng Y, Mu J, Lu Q, Wang Y, Xu Y, Chu C, Chong K, Lu C, Zuo J (2007) The Arabidopsis Spontaneous Cell Death1 gene, encoding a ζ-carotene desaturase essential for carotenoid biosynthesis, is involved in chloroplast development, photoprotection and retrograde signalling. Cell Res 17:458–470

    PubMed  CAS  Google Scholar 

  • Dorn KV, Willmund F, Schwarz C, Henselmann C, Pohl T, Heß B, Veyel D, Usadel B, Friedrich T, Nickelsen J, Schroda M (2010) Chloroplast DnaJ-like proteins 3 and 4 (CDJ3/4) from Chlamydomonas reinhardtii contain redox-active Fe-S clusters and interact with stromal HSP70B. Biochem J 427:205–215

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    Article  PubMed  CAS  Google Scholar 

  • Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–193

    Article  PubMed  CAS  Google Scholar 

  • Kong L, Wang M, Bi D (2005) Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Regul 45:155–163

    Article  CAS  Google Scholar 

  • Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J (2007) Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715–719

    Article  PubMed  CAS  Google Scholar 

  • Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350

    Article  CAS  Google Scholar 

  • Li L, van Eck J (2007) Metabolic engineering of carotenoid accumulation by creating a metabolic sink. Transgenic Res 16:581–585

    Article  PubMed  Google Scholar 

  • Li L, Paolillo DJ, Parthasarathy MV, DiMuzio EM, Garvin DF (2001) A novel gene mutation that confers abnormal patterns of β-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J 26:59–67

    Article  PubMed  CAS  Google Scholar 

  • Li L, Lu S, Cosman KM, Earle ED, Garvin DF, O’Neill J (2006) β-Carotene accumulation induced by the cauliflower Or gene is not due to an increased capacity of biosynthesis. Phytochemistry 67:1177–1184

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260

    Article  PubMed  CAS  Google Scholar 

  • Lopez AB, van Eck J, Conlin BJ, Paolillo DJ, O’neill J, Li L (2008) Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J Exp Bot 59:213–223

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Li L (2008) Carotenoid metabolism: biosynthesis, regulation, and beyond. J Integr Plant Biol 50:778–785

    Article  PubMed  CAS  Google Scholar 

  • Lu S, van Eck J, Zhou X, Lopez AB, O’Halloran DM, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J, Kochian LV, Küpper H, Earle ED, Cao J, Li L (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. Plant Cell 18:3594–3605

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martí MC, Camejo D, Olmos E, Sandalio LM, Fernández-García N, Jiménez A, Sevilla F (2009) Characterisation and changes in the antioxidant system of chloroplasts and chromoplasts isolated from green and mature pepper fruits. Plant Biology 11:613–624

    Article  PubMed  Google Scholar 

  • McGraw KJ, Crino OL, Medina-Jerez W, Nolan PM (2006) Effect of dietary carotenoid supplementation on food intake and immune function in a songbird with no carotenoid coloration. Ethology 112:1209–1216

    Article  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plantarum 133:481–489

    Article  CAS  Google Scholar 

  • Mittler R, Kim Y, Song L, Coutu J, Coutu A, Ciftci-Yilmaz S, Lee H, Stevenson B, Zhu J-K (2006) Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett 580:6537–6542

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  PubMed  CAS  Google Scholar 

  • Paolillo DJ, Garvin DF, Parthasarathy MV (2004) The chromoplasts of Or mutants of cauliflower (Brassica oleracea L. var. botrytis). Protoplasma 224:245–253

    Article  PubMed  Google Scholar 

  • Peng C-L, Lin Z-F, Su Y-Z, Lin G-Z, Dou H-Y, Zhao C-X (2006) The antioxidative function of lutein: electron spin resonance studies and chemical detection. Funct Plant Biol 33:839–846

    Article  CAS  Google Scholar 

  • Philippar K, Geis T, Ilkavets I, Oster U, Schwenkert S, Meurer J, Soll J (2007) Chloroplast biogenesis: the use of mutants to study the etioplast–chloroplast transition. Proc Natl Acad Sci USA 104:678–683

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rock CD, Zeevaart JA (1991) The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci USA 88:7496–7499

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Steyn WJ, Wand SJE, Holcroft DM, Jacobs G (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol 155:349–361

    Article  CAS  Google Scholar 

  • Sun X, Feng P, Xu X, Guo H, Ma J, Chi W, Lin R, Lu C, Zhang L (2011) A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus. Nat Commun 2:477

    Article  PubMed  Google Scholar 

  • Telfer A (2002) What is β-carotene doing in the photosystem II reaction centre? Philos Trans R Soc Lond B Biol Sci 357:1431–1440

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Udvardi MK (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell 20:1736–1737

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • von Lintig J, Wyss A (2001) Molecular analysis of vitamin A formation: cloning and characterization of β-carotene 15, 15′-dioxygenase. Arch Biochem Biophys 385:47–52

    Article  Google Scholar 

  • Welsch R, Beyer P, Hugueney P, Kleinig H, von Lintig J (2000) Regulation and activation of phytoene synthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis. Planta 211:846–854

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  PubMed  CAS  Google Scholar 

  • Woitsch S, Römer S (2003) Expression of xanthophyll biosynthetic genes during light-dependent chloroplast differentiation. Plant Physiol 132:1508–1517

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhou X, Sun T-H, Wang N, Ling H-Q, Lu S, Li L (2011) The cauliflower Orange gene enhances petiole elongation by suppressing expression of eukaryotic release factor 1. New Phytol 190:89–100

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Dr. Li for providing cauliflower homozygous Or mutant seeds. This work was supported by the China National Natural Sciences Foundation (Grant no. 30771167). Tianhu Sun was also supported by the Scientific Research Foundation of Graduate School of Nanjing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Men.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Tabel S1 Primers used for RT-qPCR (EPS 1046 kb)

10265_2013_579_MOESM2_ESM.tif

Fig. S1 Western blotting analysis of OR protein levels in curds and de-etiolated cotyledons of WT and Or mutant seedlings. For each sample, 80 μg of denatured total protein was separated on 12% SDS-PAGE gel and transferred onto nitrocellulose membrane. The primary antigen-specific antiserum was worked at 1:200 dilution and secondary HRP-conjugated goat-anti-mouse IgG antibody at 1:10000 dilution. After added the enhanced chemiluminescent substrate (Thermo), images were captured by the ChemiDoc MP Imaging System (Bio-RAD). The band is the 29 kD mature OR protein (TIFF 163 kb)

10265_2013_579_MOESM3_ESM.eps

Fig. S2 Anthocyanin content in WT and Or mutant seedlings grown under continuous white light. Seeds were sterilized and placed on 1/2 MS-agar plate. After 4 days’ synchronization, the seeds were germinated and grown under continuous white light. a WT (left) and Or mutant (right) seedlings grown under continuous white light. Anthocyanin accumulated mainly in the cotyledons in WT cauliflower seedlings while in Or mutant seedlings anthocyanin accumulated in both cotyledons and hypocotyls. b Anthocyanin content in the two lines grown under continuous white light for 5 days. Anthocyanin contents in Or mutant seedlings grown under continuous white light were similar or even lower than that in WT seedlings. Data are shown as mean ± SD and obtained from triplicates. *P < 0.05 and **P < 0.01 (EPS 4293 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Men, X., Sun, T., Dong, K. et al. Or mutation leads to photo-oxidative stress responses in cauliflower (Brassica oleracea) seedlings during de-etiolation. J Plant Res 126, 823–832 (2013). https://doi.org/10.1007/s10265-013-0579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-013-0579-x

Keywords

Navigation