Journal of Plant Research

, Volume 126, Issue 6, pp 753–762 | Cite as

Comprehensive phylogenetic analyses of the Ruppia maritima complex focusing on taxa from the Mediterranean

Regular Paper

Abstract

Recent molecular phylogenetic studies reported high diversity of Ruppia species in the Mediterranean. Multiple taxa, including apparent endemics, are known from that region, however, they have thus far not been exposed to phylogenetic analyses aimed at studying their relationships to taxa from other parts of the world. Here we present a comprehensive phylogenetic analyses of the R. maritima complex using data sets composed of DNA sequences of the plastid genome, the multi-copy nuclear ITS region, and the low-copy nuclear phyB gene with a primary focus on the Mediterranean representatives of the complex. As a result, a new lineage, “Drepanensis”, was identified as the seventh entity of the complex. This lineage is endemic to the Mediterranean. The accessions included in the former “Tetraploid” entity were reclassified into two entities: an Asia–Australia–Europe disjunct “Tetraploid_α” with a paternal “Diploid” origin, and a European “Tetraploid_γ” originating from a maternal “Drepanensis” lineage. Another entity, “Tetraploid_β”, is likely to have been originated as a result of chloroplast capture through backcrossing hybridization between paternal “Tetraploid_α” and maternal “Tetraploid_γ”. Additional discovery of multiple tetraploidizations as well as hybridization and chloroplast capture at the tetraploid level indicated that hybridization has been a significant factor in the diversification of Ruppia.

Keywords

Chloroplast capture Hybridization ITS PhyB Plastid DNA Ruppia 

References

  1. Alvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434PubMedCrossRefGoogle Scholar
  2. Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol Phylogenet Evol 1:3–16PubMedCrossRefGoogle Scholar
  3. Castroviejo S (1983) Números cromosomáticos de plantas occidentales, 211–222. Anales Jard Bot Madrid 39:525–531 (in Spanish)Google Scholar
  4. Chiang T-Y, Hong K-H, Peng C-I (2001) Experimental hybridization reveals biased inheritance of the internal transcribed spacer of the nuclear ribosomal DNA in Begonia × taipeiensis. J Plant Res 114:343–351CrossRefGoogle Scholar
  5. Cirujano S (1982) Aportaciones a la flora de los saladares castellanos. Anales Jard Bot Madrid 39:167–173 (in Spanish)Google Scholar
  6. Cirujano S (1986) El género Ruppia L. (Potamogetonaceae) en la mancha (España). Bol Soc Brot sér. 2, 59: 293–303 (in Spanish)Google Scholar
  7. Clarke LA, Rebelo CS, Gonçalves J, Boavida MG, Jordan P (2001) PCR amplification introduces errors into mononucleotide and dinucleotide repeat sequences. Mol Pathol 54:351–353PubMedCrossRefGoogle Scholar
  8. Farris JS, Källersjö M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics 10:315–319CrossRefGoogle Scholar
  9. Felsenstein J (1985) Confidence limits on phylogenies- an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  10. Ito Y, Ohi-Toma T, Murata J, Tanaka N (2010) Hybridization and polyploidy of an aquatic plant, Ruppia (Ruppiaceae), inferred from plastid and nuclear DNA phylogenies. Am J Bot 97:1156–1167PubMedGoogle Scholar
  11. Jacobs SWL, Brock MA (2011) Ruppiaceae. In: Wilson A (ed) Flora of Australia, volume 39, Alismatales to Arales. ABRS/CISRO, Melbourne, pp 95–98Google Scholar
  12. Kelchner SA (2000) The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann Missouri Bot Gard 87:482–498CrossRefGoogle Scholar
  13. Kim S-T, Sultan SE, Donoghue MJ (2008) Allopolyploid speciation in Persicaria (Polygonaceae): insights from a low-copy nuclear region. Proc Natl Acad Sci USA 105:12370–12375PubMedCrossRefGoogle Scholar
  14. Marchioni-Ortu A (1982) Numeri cromosomici per la Flora Italiana: 873–876. Inf Bot Ital 14:234–237 (in Italy)Google Scholar
  15. Marcussen T, Jakobsen KS, Danihelka J, Ballard HE, Blaxland K, Brysting AK, Oxelman B (2012) Inferring species networks from gene trees in high-polyploid North American and Hawaiian violets (Viola, Violaceae). Syst Biol 61:107–126PubMedCrossRefGoogle Scholar
  16. Mathews S, Tsai RC, Kellogg EA (2000) Phylogenetic structure in the grass family (Poaceae): evidence from the nuclear gene phytochrome B. Am J Bot 87:96–107PubMedCrossRefGoogle Scholar
  17. Nylander JAA (2002) MrModeltest v.1.0. Program distributed by the author. Department of Systematic Zoology, Uppsala University, Uppsala. http://www.ebc.uu.se/systzoo/staff/nylander.html
  18. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  19. Sang T (2002) Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit Rev Biochem Mol 37:121–147CrossRefGoogle Scholar
  20. Sang T, Crawford DJ, Stuessy TF (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci USA 92:6813–6817PubMedCrossRefGoogle Scholar
  21. Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136PubMedCrossRefGoogle Scholar
  22. Setchell WA (1946) The genus Ruppia L. Proc Calif Acad Sci 25:469–478Google Scholar
  23. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381PubMedCrossRefGoogle Scholar
  24. Soltis DE, Mavrodiev EV, Doyle JJ, Rauscher J, Soltis PS (2008) ITS and ETS sequence data and phylogeny reconstruction in allopolyploids and hybrids. Syst Bot 33:7–20CrossRefGoogle Scholar
  25. Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4.0b. Sinauer, Sunderland, Massachusetts, USAGoogle Scholar
  26. Talavera S, Garcia-Murillo P, Herrera J (1993) Chromosome numbers and a new model for karyotype evolution in Ruppia L. (Ruppiaceae). Aquat Bot 45:1–13CrossRefGoogle Scholar
  27. Triest L, Sierens T (2010) Chloroplast sequences reveal a diversity gradient in the Mediterranean Ruppia cirrhosa species complex. Aquat Bot 93:68–74CrossRefGoogle Scholar
  28. Triest L, Sierens T (2013) Is the genetic structure of Mediterranean Ruppia shaped by bird-mediated dispersal or sea currents? Aquat Bot 104:176–184CrossRefGoogle Scholar
  29. Triest L, Symoens JJ (1991) Isozymes in populations of the submerged halophyte Ruppia (Ruppiaceae). Op Bot Belg 4:117–134Google Scholar
  30. Van Vierssen W, van Wijk RJ, van der Zee JR (1981) Some additional notes on the cytotaxonomy of Ruppia taxa in western Europe. Aquat Bot 11:297–301CrossRefGoogle Scholar
  31. Weiss-Schneeweiss H, Blöch C, Turner B, Villaseñor JL, Stuessy TF, Schneeweiss GM (2012) The promiscuous and the chaste: frequent allopolyploid speciation and its genomic consequences in American daisies (Melampodium sect. Melampodium; Asteraceae). Evolution 66:211–228PubMedCrossRefGoogle Scholar
  32. Wendel JF, Schnabel A, Seelanan T (1995) Bidirectional interlocus concerted evolution following alloploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA 92:280–284PubMedCrossRefGoogle Scholar
  33. Yang Z, Rannala B (1997) Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo method. Mol Biol Evol 14:717–724PubMedCrossRefGoogle Scholar
  34. Zhao LC, Wu ZY (2008) A review of the taxonomy and evolution of Ruppia. J Syst Evol 46:467–478Google Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2013

Authors and Affiliations

  • Yu Ito
    • 1
    • 2
  • Tetsuo Ohi-Toma
    • 3
  • Jin Murata
    • 3
  • Norio Tanaka
    • 4
  1. 1.Department of BiologyUniversity of SaskatchewanSaskatoonCanada
  2. 2.School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
  3. 3.Botanical Gardens, Graduate School of Science, The University of TokyoTokyoJapan
  4. 4.Tsukuba Botanical GardenNational Museum of Nature and ScienceTsukubaJapan

Personalised recommendations