Journal of Plant Research

, Volume 126, Issue 4, pp 461–468 | Cite as

Nuclear DNA content in some species of Lessingianthus (Vernonieae, Asteraceae) by flow cytometry

  • María B. Angulo
  • Massimiliano Dematteis
Regular paper


The nuclear DNA content was determined for the first time in 25 species of the South American genus Lessingianthus H.Rob. (Vernonieae, Asteraceae) by flow cytometry. This analysis constitutes the first estimation of the genome size for the Vernonieae tribe. The 2C- and 1Cx-values were calculated in all the species. The 2C-value ranged from 2.04 to 14.34 pg. The 1Cx-value ranged from 0.995 to 1.43 pg. The general tendency indicated a decrease in the 1Cx-value with increasing ploidy level, with some exceptions, in some species the 1Cx-value increased with the ploidy increase. The measuring of DNA content allowed reporting a new cytotype for L. polyphyllus (Sch.Bip.) H.Rob.


Asteraceae Polyploidy Vernonieae 1Cx-value 2C-value 



This work has been supported by grants from the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), the Secretaría General de Ciencia y Técnica de la Universidad Nacional del Nordeste (SGCyT-UNNE) and the Myndel Botanica Foundation.


  1. Angulo MB, Dematteis M (2009a) Caryological analysis of South American species of Vernonia (Vernonieae, Asteraceae). Plant Biosyst 143:20–24CrossRefGoogle Scholar
  2. Angulo MB, Dematteis M (2009b) Karyotype analysis in eight species of Vernonia (Vernonieae, Asteraceae) from South America. Caryologia 62:81–88Google Scholar
  3. Angulo MB, Dematteis M (2012) Cytotaxonomy of some species of the South American genus Lessingianthus (Asteraceae, Vernonieae). Plant Syst Evol 298:277–285CrossRefGoogle Scholar
  4. Baker JG (1873) Compositae. I. Vernoniaceae. In: Martius C (ed) Flora Brasiliensis, vol 6, pp 1–179Google Scholar
  5. Bancheva S, Greilhuber J (2006) Genome size in Bulgarian Centaurea s.l. (Asteraceae). Plant Syst Evol 257:95–117CrossRefGoogle Scholar
  6. Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in Angiosperms: progress, problems and prospects. Ann Bot 95:45–90PubMedCrossRefGoogle Scholar
  7. Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc B 274:227–274CrossRefGoogle Scholar
  8. Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269PubMedCrossRefGoogle Scholar
  9. Bennetzen JL, Kellogg EA (1997) Do plants have a one-way ticket to genomic obesity? Plant Cell 9:1509–1514PubMedGoogle Scholar
  10. Chrtek J Jr, Zahradníček J, Krak K, Fehrer J (2009) Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phylogenetic groups. Ann Bot 104:161–178PubMedCrossRefGoogle Scholar
  11. Dematteis M (1996) Estudios cromosómicos en especies argentinas de Vernonia (Asteraceae). Bonplandia 9:103–110 (in Spanish)Google Scholar
  12. Dematteis M (1997) Números cromosómicos y cariotipos de algunas especies de Vernonia (Asteraceae). Bol Soc Argent Bot 33:85–90Google Scholar
  13. Dematteis M (1998) Karyotype analysis in some Vernonia species (Asteraceae) from South America. Caryologia 51:279–288Google Scholar
  14. Dematteis M (2002) Cytotaxonomic analysis of South American species of Vernonia (Vernonieae: Asteraceae). Bot J Linn Soc 139:401–408CrossRefGoogle Scholar
  15. Dematteis M (2006) Two new species of Lessingianthus (Vernonieae, Asteraceae) from the Brazilian highlands. Bot J Linn Soc 150:487–493CrossRefGoogle Scholar
  16. Dematteis M, Molero J, Angulo MB, Rovira A (2007) Chromosome studies of some Asteraceae from South America. Bot J Linn Soc 153:221–230CrossRefGoogle Scholar
  17. Devos K, Brown J, Bennetzen J (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079PubMedCrossRefGoogle Scholar
  18. Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW (2009) InfoStat version 2009. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.
  19. Doležel J, Bartoš J (2005) Plant flow cytometry and estimation of Nuclear Genome size. Ann Bot 95:99–110PubMedCrossRefGoogle Scholar
  20. Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51:127–128PubMedCrossRefGoogle Scholar
  21. Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:233–2244Google Scholar
  22. Garnatje T, Canela MA, Garcia S, Hidalgo O, Pellicer J, Sánchez-Jiménez I, Siljak-Yakovlev S, Vitales D, Vallès J (2010) GSAD: A genome size database in the Asteraceae. Release 1.0, July (, database environment by Gálvez F.)
  23. Greilhuber J, Doležel J, Lysak MA, Bennett MD (2005) Evolution and proposed stabilization of the terms ‘Genome Size’ and ‘C-Value’ to describe nuclear DNA contents. Ann Bot 95:255–260PubMedCrossRefGoogle Scholar
  24. Jacob SS, Meister A, Blatner FR (2004) The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Mol Biol Evol 21:860–869CrossRefGoogle Scholar
  25. Keeley SC, Robinson H (2009) Vernonieae. In: Funk VA, Susanna A, Stuessy TF, Bayer RJ (eds) Systematics, evolution and biogeography of Compositae. IAPT, Wien, pp 439–469Google Scholar
  26. Kellogg EA, Bennetzen JL (2004) The evolution of nuclear genome structure in plants. Am J Bot 91:1709–1725PubMedCrossRefGoogle Scholar
  27. Lafuma L, Balkwill K, Imbert E, Verlaque R, Maurice S (2003) Ploidy level and origin of the European invasive weed Senecio inaequidens (Asteraceae). Plant Syst Evol 243:59–72CrossRefGoogle Scholar
  28. Lavia GI, Fernández A (2008) Genome size in wild and cultivated peanut germplasm. Plant Syst Evol 272:1–10CrossRefGoogle Scholar
  29. Leitch IJ, Bennett MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2:470–476CrossRefGoogle Scholar
  30. Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663CrossRefGoogle Scholar
  31. Leitch IJ, Chase MW, Bennett MD (1998) Phylogenetic analysis of DNA C-values provides evidence for small ancestral genome size in flowering plants. Ann Bot 82:85–94CrossRefGoogle Scholar
  32. López A, Panseri AF, Poggio L, Fernández A (2011) Nuclear DNA content in the polyploid complex Turnera ulmifolia (Turnera L., Passifloraceae). Plant Syst Evol 296:225–230CrossRefGoogle Scholar
  33. Morgan M (2001) Transposable element number in mixed mating populations. Genet Res 77:261–275PubMedCrossRefGoogle Scholar
  34. Oliveira VM, Forni-Martins ER, Semir J (2007) Cytotaxonomic studies in six species of Vernonia (Asteraceae: Vernonieae). Caryologia 60:37–47Google Scholar
  35. Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437PubMedCrossRefGoogle Scholar
  36. Ozkan H, Tua M, Arumuganathan K (2003) Nonadditive changes in genome size during allopolyploidization in the wheal (Aegilops–Triticum) group. J Hered 94:260–264PubMedCrossRefGoogle Scholar
  37. Pellicer J, Garcia S, Garnatje T, Dariima S, Korobkov AA, Vallès J (2007) Chromosome numbers in some Artemisia (Asteraceae, Anthemideae) species and genome size variation in its subgenus Dracunculus: karyological, systematic and phylogenetic implications. Chromosome Bot 2:45–53CrossRefGoogle Scholar
  38. Petrov DA (2001) Evolution of genome size: new approaches to an old problem. Trends Genet 17:23–28PubMedCrossRefGoogle Scholar
  39. Poggio L, González G, Naranjo CA (2007) Chromosome Studies in Hippeastrum (Amaryllidaceae): variation in genome size. Bot J Linn Soc 155:171–178CrossRefGoogle Scholar
  40. Price J, Chambers KL, Bachmann K (1981) Geographic and ecological distribution of genomic DNA content variation in Microseris douglasii (Asteraceae). Bot Gaz 142:415–426CrossRefGoogle Scholar
  41. Price HJ, Hodnett G, Johnston JS (2000) Sunflower (Helianthus annus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Ann Bot 86:929–934CrossRefGoogle Scholar
  42. Robinson H (1988a) Studies in the Lepidaploa complex (Vernonieae: Asteraceae). IV. The new genus Lessingianthus. Proc Biol Soc Wash 100:929–951Google Scholar
  43. Robinson H (1988b) Studies in the Lepidaploa complex (Vernonieae: Asteraceae). V. The new genus Chrysolaena. Proc Biol Soc Wash 101:952–958Google Scholar
  44. Robinson H (1988c) Studies in the Lepidaploa complex (Vernonieae: Asteraceae). VI. The new genus Aynia. Proc Biol Soc Wash 100:959–965Google Scholar
  45. Robinson H (1992) Mesanthophora, a new genus of Vernonieae (Asteraceae) from Paraguay. Novon 2:169–172CrossRefGoogle Scholar
  46. Robinson H (1999) Generic and subtribal classification of American Vernonieae. Smithson Contribution Bot 89:1–116CrossRefGoogle Scholar
  47. Ruas PM, Ruas CF, Vieira AOS, Matzenbacher NI, Martins NS (1991) Cytogenetics of genus Vernonia Schreber (Compositae). Cytologia 56:239–247CrossRefGoogle Scholar
  48. Sims LE, Price HJ (1985) Nuclear DNA content variation in Helianthus (Asteraceae). Am J Bot 72:1213–1219CrossRefGoogle Scholar
  49. Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352PubMedCrossRefGoogle Scholar
  50. Soltis DE, Soltis PS, Tate JA (2003) Advances in the study of polyploidy since Plant Speciation. New Phytol 161:173–191CrossRefGoogle Scholar
  51. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng Ch, Sankoff D, de Pamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348PubMedCrossRefGoogle Scholar
  52. Vaio M, Mazzella C, Porro V, Speranza PS, López-Carro B, Estramil E, Folle GA (2007) Nuclear DNA content in allopolyploid species and synthetic hybrids in the grass genus Paspalum. Plant Syst Evol 265:109–121CrossRefGoogle Scholar
  53. Wendel JF, Cronn RC, Johnston JS, Price HJ (2002) Feast and famine in plant genomes. Genetica 115:37–47PubMedCrossRefGoogle Scholar
  54. Wright SI, Schoen DJ (1999) Transposon dynamics and the breeding system. Genetica 107:139–148PubMedCrossRefGoogle Scholar
  55. Zonneveld BJM, Leitch IJ, Bennett MD (2005) First nuclear amounts in more than 300 angiosperms. Ann Bot 96:229–244PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2012

Authors and Affiliations

  1. 1.Instituto de Botánica del Nordeste (UNNE, CONICET)CorrientesArgentina

Personalised recommendations