Advertisement

Journal of Plant Research

, Volume 126, Issue 3, pp 363–371 | Cite as

Phylogenetic relationship and molecular taxonomy of African grasses of the genus Panicum inferred from four chloroplast DNA-barcodes and nuclear gene sequences

  • Tanja Zimmermann
  • Gaëlle Bocksberger
  • Wolfgang Brüggemann
  • Thomas Berberich
Regular paper

Abstract

The genus Panicum s.l. comprises about 450 grass species in which the C4 and the C3 metabolic pathways of photosynthesis are realized. In the West African savannah, Panicum spp. and closely related taxa dominate the landscape, with species differentially adapted to drought conditions. We obtained four chloroplast DNA barcode sequences, rbcL, matK, ndhF and trnH-psbA intergenic region, for nine Panicum spp. with a focus on West African species, and we performed maximum likelihood analysis to infer their phylogenetic relationship. Furthermore the phylogenetic placement of five newly sequenced taxa was achieved using a published phylogeny of more than 300 Panicoids based on ndhF sequences. The comparison of the resulting phylogenetic tree constructed from a combination of all four barcode sequences with the one based on rbcL and matK showed that the latter combination of the two, is sufficient for the analysis. A tree constructed from amino acid sequences derived from isolated cDNAs of the nucleus-encoded phosphoenolpyruvate carboxylase displayed a similar topology. All ppc-sequences could be annotated to either ppc-B2 or ppc-aR. Moreover the inclusion of the West African Panicum species in an extensive dataset of Panicoids supports the proposition that within the subtribe Panicinae only the NAD-malic enzyme type of C4 photosynthesis is present.

Keywords

DNA-barcode ndhF Panicum Phosphoenolpyruvate carboxylase Phylogeny 

Notes

Acknowledgments

The present study was funded by the research funding programme “LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research, and the Arts and the Stiftung Polytechnische Gesellschaft Frankfurt am Main. We greatly appreciate valuable comments of one anonymous reviewer to improve the manuscript.

Supplementary material

10265_2012_538_MOESM1_ESM.tif (816 kb)
Supplementary material 1 (TIFF 815 kb)
10265_2012_538_MOESM2_ESM.tif (793 kb)
Supplementary material 2 (TIFF 792 kb)

References

  1. Aliscioni SS, Giussani LM, Zuloaga FO, Kellogg EA (2003) A molecular phylogeny of Panicum (Poaceae: Paniceae): tests of monophyly and phylogenetic placement within the Panicoideae. Am J Bot 80:796–821CrossRefGoogle Scholar
  2. Bess EC, Doust AN, Kellogg EA (2005) A naked grass in the “Bristle Clade”: a phylogenetic and developmental study of Panicum section Bulbosa (Paniceae: Poaceae). Int J Plant Sci 166:371–381CrossRefGoogle Scholar
  3. Blaesing OE, Westhoff P, Svensson P (2000) Evolution of C4 phosphoenolpyruvate carboxylase in Flaveria, a conserved Serine residue in the carboxyl-terminal part of the enzyme is a major determinant for C4-specific characteristics. J Biol Chem 275:27917–27923Google Scholar
  4. Brown ME, Hintermann B, Higgins N (2009) Markets, climate change, and food security in West Africa. Environ Sci Technol 43:8016–8020PubMedCrossRefGoogle Scholar
  5. CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794–12797CrossRefGoogle Scholar
  6. Christin P-A, Besnard G (2009) Two independent C4 origins in Aristidoideae (Poaceae) revealed by the recruitment of distinct phosphoenolpyruvate carboxylase genes. Am J Bot 96:2234–2239PubMedCrossRefGoogle Scholar
  7. Christin P-A, Salamin N, Savolainen V, Duvall MR, Besnard G (2007) C4 photosynthesis evolved in grasses via parallel adaptive genetic changes. Curr Biol 17:1241–1247PubMedCrossRefGoogle Scholar
  8. Christin P-A, Salamin N, Muasya AM, Roalson EH, Russier F, Besnard G (2008) Evolutionary switch and genetic convergence on rbcL following the evolution of C4 photosynthesis. Mol Biol Evol 25:2361–2368PubMedCrossRefGoogle Scholar
  9. Christin P-A, Salamin N, Kellogg EA, Vicentini A, Besnard G (2009) Integrating phylogeny into studies of C4 variation in the grasses. Plant Physiol 149:82–87PubMedCrossRefGoogle Scholar
  10. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2011) Geneious v5.4. Available from http://www.geneious.com
  11. Ehleringer JR, Cerling TE, Helliker BR (1997) C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112:285–299CrossRefGoogle Scholar
  12. Ghannoum O, von Caemmerer S, Conroy JP (2002) The effect of drought on plant water use efficiency of nine NAD–ME and nine NADP–ME australian C4 grasses. Funct Plant Biol 29:1337–1348CrossRefGoogle Scholar
  13. Giussani LM, Cota-Sánchez JH, Zuloaga FO, Kellogg EA (2001) A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosynthesis. Am J Bot 88:1993–2012PubMedCrossRefGoogle Scholar
  14. Grass Phylogeny Working Group II (2012) New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytol 193:304–312CrossRefGoogle Scholar
  15. Heckathorn SA, McNaughton SJ, Coleman JS (1999) In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 285–312CrossRefGoogle Scholar
  16. Hély C, Bremond L, Alleaume S, Smith B, Sykes MT, Guiot J (2006) Sensitivity of african biomes to changes in the precipitation regime. Global Ecol Biogeogr 15:258–270Google Scholar
  17. Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  18. Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS ONE 6:e19254PubMedCrossRefGoogle Scholar
  19. Ibrahim DG, Burke T, Ripley BS, Osborne CP (2009) A molecular phylogeny of the genus Alloteropsis (Panicoideae, Poaceae) suggests an evolutionary reversion from C4 to C3 photosynthesis. Ann Bot 103:127–136PubMedCrossRefGoogle Scholar
  20. IPCC (2007) Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  21. Kanai R, Edwards GE (1999) The biochemistry of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 49–87CrossRefGoogle Scholar
  22. Kellogg EA, Aliscioni SS, Morrone O, Pensiero J, Zuloaga F (2009) A phylogeny of Setaria (Poaceae, Panicoideae, Paniceae) and related genera based on the chloroplast gene ndhF. Int J Plant Sci 170:117–131CrossRefGoogle Scholar
  23. Khan MA, Ansari R, Ali H, Gul B, Nielsen BL (2009) Panicum turgidum, a potentially sustainable cattle feed alternative to Maize for saline areas. Agric Ecosyst Environ 129:542–546CrossRefGoogle Scholar
  24. Kress JW, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102:8369–8374PubMedCrossRefGoogle Scholar
  25. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0 Bioinfo 23:2947–2948Google Scholar
  26. Morrone O, Aagesen L, Scataglini MA, Salariato DL, Denham SS, Chemisquy MA, Sede SM, Giussani LM, Kellogg EA, Zuloaga FO (2012) Phylogeny of the Paniceae (Poaceae: Panicoideae): integrating plastid DNA sequences and morphology into a new classification. Cladistics. doi: 10.1111/j.1096-0031.2011.00384.x Google Scholar
  27. Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370CrossRefGoogle Scholar
  28. Salariato DL, Zuloaga FO, Giussani LM, Morrone O (2010) Molecular phylogeny of the subtribe Melinidinae (Poaceae: Panicoideae: Paniceae) and evolutionary trends in the homogenization of inflorescences. Mol Phyl Evol 56:355–369CrossRefGoogle Scholar
  29. Sede SM, Morrone O, Giussani LM, Zuloaga FO (2008) Phylogenetic studies in the Paniceae (Poaceae): a realignment of section Lorea of Panicum. Syst Bot 33:284–300CrossRefGoogle Scholar
  30. Sede SM, Zuloaga FO, Morrone O (2009) Phylogenetic studies in the Paniceae (Poaceae-Panicoideae): Ocellochloa, a new genus from the new world. Sys Bot 34:684–692CrossRefGoogle Scholar
  31. Silvestro D, Michalak I (2011) raxmlGUI: a graphical front-end for RAxML. Organ Div Evol. doi: 10.1007/s13127-011-0056-0 Google Scholar
  32. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinfomatics 22:2688–2690CrossRefGoogle Scholar
  33. Still CJ, Berry JA, Collatz GJ, DeFries RS (2003) Global distribution of C3 and C4 vegetation: carbon cycle implications. Global Biogeochem Cycles 17:1006CrossRefGoogle Scholar
  34. Svensson P, Bläsing OE, Westhoff P (2003) Evolution of C4 phosphoenolpyruvate carboxylase. Arch Biochem Biophys 414:180–188PubMedCrossRefGoogle Scholar
  35. Vicentini A, Barber JC, Aliscioni SS, Giussani LM, Kellogg EA (2008) The age of the grasses and clusters of origins of C4 photosynthesis. Global Change Biol 14:2963–2977CrossRefGoogle Scholar
  36. Zuloaga FO, Giussani LM, Morrone O (2006) On the taxonomic position of Panicum aristellum (Poaceae: Panicoideae: Paniceae). Syst Bot 90:497–505CrossRefGoogle Scholar
  37. Zuloaga FO, Scataglini MA, Morrone O (2010) A phylogenetic evaluation of Panicum sects. Agrostoidea, Megista, Prionitia and Tenera (Panicoideae, Poaceae): two new genera, Stephostachys and Sorengia. Taxon 59:1535–1546Google Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2012

Authors and Affiliations

  • Tanja Zimmermann
    • 2
  • Gaëlle Bocksberger
    • 1
    • 3
  • Wolfgang Brüggemann
    • 1
    • 2
  • Thomas Berberich
    • 1
  1. 1.Biodiversity and Climate Research Centre (BiK-F)FrankfurtGermany
  2. 2.Institute for Ecology, Evolution and DiversityGoethe-UniversityFrankfurtGermany
  3. 3.Department of Botany and Molecular EvolutionSenckenberg Research InstituteFrankfurtGermany

Personalised recommendations