Advertisement

Journal of Plant Research

, Volume 126, Issue 1, pp 105–112 | Cite as

Maturation timing of stamens and pistils in the dioecious plant Silene latifolia

  • Wataru Aonuma
  • Yuji Shimizu
  • Kotaro Ishii
  • Naoko Fujita
  • Shigeyuki KawanoEmail author
Regular Paper

Abstract

The dioecious plant Silene latifolia depends on nocturnal insects for pollination. To increase the chance of cross-pollination, pollen grains seem to be released and stigmas seem to be receptive simultaneously at night. We divided the floral development of S. latifolia into 1–20 stages, and determined the timetables of male and female function. The corolla of both male and female flowers opens at sunset (1900 hours) and closes at sunrise (0900 hours). To investigate the period of the reproductive phase of male and female function, we measured the germination rate on a pollen medium and the pollen germination rate on stigma during the period when stamens and stigmas were viable in the timetable. Male flowers had early- and late-maturing stamens that had the highest pollen viability, germination rate and pollen tube growth at midnight (0000 hours) at 1 day after flowering (DAF) and 0000 hours at 2 DAF. In contrast, female flowers maintained a germination rate of nearly 100 % from 1800 hours at 1 DAF to 1200 hours at 3 DAF. These results suggested that S. latifolia transferred the matured pollen grains from male flowers to female flowers only at night.

Keywords

Dioecy Silene latifolia Nocturnal species Pollen germination 

Notes

Acknowledgments

This work was supported by a Grant-in-Aid for Exploratory Research (to SK 18657001) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and by a grant for the Promotion of Science from RIKEN (to SK).

Supplementary material

10265_2012_510_MOESM1_ESM.tif (1.5 mb)
Supplementary material 1 (TIFF 1,500 kb)
10265_2012_510_MOESM2_ESM.tif (1.1 mb)
Supplementary material 2 (TIFF 1,091 kb)

References

  1. Bertin RI, Newman CM (1993) Dichogamy in angiosperms. Bot Rev 59:112–152. doi: 10.1007/BF02856676 CrossRefGoogle Scholar
  2. Comba L, Corbet SA, Hunt L, Warren B (1999) Flowers, nectar and insect visits: evaluating British plant species for pollinator-friendly gardens. Ann Bot 83:369–383. doi: 10.1006/anbo.1998.0835 CrossRefGoogle Scholar
  3. Fang X, Turner NC, Yan G, Li F, Siddique KHM (2010) Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. J Exp Bot 61:335–345. doi: 10.1093/jxb/erp307 PubMedCrossRefGoogle Scholar
  4. Farbos I, Oliveira M, Negrutiu I, Mouras A (1997) Sex organ determination and differentiation in the dioecious plant Melandrium album (Silene latifolia): a cytological and histological analysis. Sex Plant Reprod 10:155–167. doi: 10.1007/s004970050083 CrossRefGoogle Scholar
  5. Friedrich C (1979) Familie Caryophyllaceae. In: Hegi G (ed) Illustrierte Flora von Mitteleuropa, vol 3. Verlag Paul Parey, Berlin, pp 763–1182Google Scholar
  6. Galen C (2000) High and dry: drought stress, sex allocation trade-offs, and selection on flower size in the alpine wildflower Polemonium viscosum (Polemoniaceae). Am Nat 156:72–83. doi: 10.1086/303373 PubMedCrossRefGoogle Scholar
  7. Galloway LF, Cirigliano T, Gremsky K (2002) The contribution of display size and dichogamy to potential geitonogamy in Campanula americana. Int J Plant Sci 163:133–139. doi: 10.1086/324556 CrossRefGoogle Scholar
  8. Grant S, Hunkirchen B, Saedler H (1994) Developmental differences between male and female flowers in the dioecious plant Silene latifolia. Plant J 6:471–480CrossRefGoogle Scholar
  9. Jolivet C, Bernasconi G (2007) Within/between population crosses reveal genetic basis for siring success in Silene latifolia (Caryophyllaceae). J Evol Biol 20:1361–1374. doi: 10.1111/j.1420-9101.2007.01344.x PubMedCrossRefGoogle Scholar
  10. Kazama Y, Sugiyama R, Matsunaga S, Shibata F, Uchida W, Hizume M, Kawano S (2003) Organization of the KpnI family of chromosomal distal-end satellite DNAs in Silene latifolia. J Plant Res 116:317–326. doi: 10.1007/s10265-003-0106-6 PubMedCrossRefGoogle Scholar
  11. Mandaoka A, Browse J (2009) MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis. Plant Physiol 149:851–862. doi: 10.1104/pp.108.132597 CrossRefGoogle Scholar
  12. Runner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–6064CrossRefGoogle Scholar
  13. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767PubMedGoogle Scholar
  14. Steinacher G, Wagner J (2010) Flower longevity and duration of pistil receptivity in high mountain plants. Flora 205:376–387. doi: 10.1016/j.flora.2009.12.012 CrossRefGoogle Scholar
  15. Witt T, Jürgens A, Geyer R, Gottsberger G (1999) Nectar dynamics and sugar composition in flowers of Silene and Saponaria species (Caryophyllaceae). Plant Biol 1:334–345. doi: 10.1111/j.1438-8677.1999.tb00261.x CrossRefGoogle Scholar
  16. Young HJ (2002) Diurnal and nocturnal pollination of Silene alba (Caryophyllaceae). Am J Bot 89:433–440. doi: 10.3732/ajb.89.3.433 PubMedCrossRefGoogle Scholar
  17. Young HJ, Gravitz L (2002) The effects of stigma age on receptivity in Silene alba (Caryophyllaceae). Am J Bot 89:1237–1241. doi: 10.3732/ajb.89.8.1237 PubMedCrossRefGoogle Scholar
  18. Zluvova J, Zak J, Janousek B, Vyskot B (2010) Dioecious Silene latifolia plants show sexual dimorphism in the vegetative stage. BMC Plant Biol 10:208. doi: 10.1186/1471-2229-10-208 PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer 2012

Authors and Affiliations

  • Wataru Aonuma
    • 1
  • Yuji Shimizu
    • 1
  • Kotaro Ishii
    • 1
  • Naoko Fujita
    • 1
  • Shigeyuki Kawano
    • 1
    Email author
  1. 1.Department of Integrated Biosciences, Graduate School of Frontier SciencesUniversity of TokyoKashiwaJapan

Personalised recommendations